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ABSTRACT
A secure version of the naïve Bayesian filter (NBF) is proposed
utilizing partially homomorphic encryption (PHE) scheme. SNBF
can be implemented with only the additive homomorphism from
the Paillier system, and we derive new techniques to reduce the
computational cost of PHE-based SNBF. In the experiment, we im-
plemented SNBF both in software and hardware. Compared to the
best existing PHE scheme, we achieved 1,200x (resp., 398,840x)
runtime reduction in the CPU (resp., ASIC) implementations, with
additional 1,919x power reduction on the designated hardwaremul-
tiplier. Our hardware implementation is able to classify an average-
length email in 0.5 s, making it one of themost practical NBF schemes
to date.
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1 INTRODUCTION
While outsourcing personal, organizational, or even institutional
database to cloud services have become a common practice [7, 12],
due to privacy concerns, the outsourced data are generally re-
stricted to be in the less sensitive domains [7, 10]. As a perfect
example, outsourcing personal or organizational email data to re-
mote server presents to be challenging in terms of balancing pri-
vacy and efficiency. On one hand, since the server possesses a large
amount training email samples, and thus a good email filter, the
server should be able to filter ham/spam emails based on publicly-
available word lists. On the other hand, in a traditional setup, this
requires the server to have access to the email data, which violates
privacy requirements in many situations [9].

As a result, the idea of implementing a secure email filter using
advanced cryptographic primitives such as public-key encryption
with keyword search (PEKS) [3] or partially or fully homomorphic
encryption (PHE or FHE) [1, 4, 5, 13] has long been suggested. A
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Figure 1: The proposed communication protocol.

secure email filter refers to the security scheme where, as Fig. 1 il-
lustrates (ignoring the details), the server Chelsea is asked to clas-
sify an email from Bob to Alice as spam or not, without knowing
the contents of the emails. The insecure version of this filter, where
Chelsea knows the contents of the email, can be constructed using
a naïve Bayesian filter (NBF) [15].

The implementation of a secure email filter can thus be trans-
lated into a problem of realizing an NBF securely using ad-
vanced cryptographic primitives. While both PHE [2, 5] and FHE-
based [13] approaches are suggested, the performance of general
HE-based methods are still not in the practical domain. For in-
stance, using the best-performing FHE schemes in [13] and [8], a
multiplication between ciphertexts requires 300ms and 17–22ms,
respectively, on a modern CPU. As shown in Section 5, this trans-
lates to more than 3 hours per word filtering in our setup, which
is clearly impractical. By using interactive protocols and PHE,
Bost et al. obtain improved efficiency, at the cost of high communi-
cation bandwidth [5]. In our experiment, we found that even using
the existing PHE approach, we need around one minute to filter
one word, whereas the length of emails in our test dataset aver-
ages to 287 words per email. Hence, improving the performance
of existing approaches into a practical domain is the main focus of
this work.

The goal of this study is thus to use hardware-assisted PHE-
based techniques to construct a secure naïve Bayesian filter (SNBF)
that is provably secure and practically deployable. The major con-
tribution of this work is summarized as follows.

• PHE-based SNBF: We devised a novel secure filtering
scheme where a client outsources PHE operations to a
server, avoiding expensive FHE operations. Our technique
works with all PHE schemes, including quantum-secure
schemes based on the LWE problem (e.g., [11]). Specifically,
we improve the existing naïve Bayesian filter [5] by deriv-
ing novel weight-embedding and batching techniques that
reduce the total number of homomorphic operations by an
order of 1,200x. The most important observation we make
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is that, in the case of email filtering, we can simply em-
bed rounded exponent weight into the matching result, in-
stead of fixed-point representations used in [5, 13]. Hence,
the proposed SNBF is a new approach for machine learning
technique optimized for secure applications.

• Accuracy and Practicality of SNBF: To the best of our
knowledge, we are the first to use combined hardware and
software co-design to rigorously verify the accuracy and
practicality of an SNBF for email classification. We verifies
that the improved weight embedding does not impact the
classification accuracy using real-world dataset, and with
the assistance of application-specific hardware multiplier,
we were able to securely classify an average-length email
within 0.5 s, bringing secure email filtering into practical do-
main.

• Architectural Design Exploration for Homomorphic
Evaluation: The major performance advantage in our
SNBF comes from the hardware layer. By designing a spe-
cialized 2048-bit hardware multiplier based on the recur-
sive Karatsuba-Montgomery algorithm, we were able to re-
duce the energy consumption of filtering a set of ciphertext
(which may contain one or more words) scheme by 105 in
magnitude compared to software implementation on CPU.

The rest of the work is organized as follows. First, in Section 2,
we give short reviews on NBF and the Paillier cryptosystem. Next,
the algorithmic-level and hardware-level descriptions of our pro-
posed SNBF scheme are presented in Section 3 and 4, respectively.
In Section 5, we discuss the accuracy and performance of SNBF.
Finally, we conclude our paper in Section 6.

2 PRELIMINARIES
Throughout this work, we use the standard notation of Zn to de-
note the residues of integer mod n. We use {x} to refer to the set
containing some number of elements, where the i-th element is xi .
Additionally, lgx is the shorthand for log2 x .

2.1 The Paillier Cryptosystem
In searching for a practically viable homomorphic encryption to be
used in SNBF, we take a step back and look at the PHE described
by Pascal Paillier [16]. Since we do not change the encryption and
decryption scheme of Paillier, the reader is referred to the origi-
nal paper [16] for the respective functions. We use Paillier.Enc for
encryption function under Paillier, and Paillier.Dec for decryption
function.

The important property of Paillier cryptosystem is its addi-
tive homomorphism, i.e., given the encryption of two messages
Enc(m1) and Enc(m2),

Enc(m1) · Enc(m2) mod n2 = Enc(m1 +m2 mod n). (1)

Stemming from its additive homomorphism, the Paillier system
permits the following operation on the ciphertext. For two mes-
sagesm1 andm2,

Enc(m1)m2 mod n2 = Enc(m1 ·m2 mod n) (2)

Enc(m1) · дm2 mod n2 = Enc(m1 +m2 mod n). (3)

In this work, we denote the addition in the ciphertext space (e.g.,
Eq. (3)) as ⊞ (e.g., Enc(m1) ⊞ m2), and (constant) multiplication
as ⊡ (e.g., Eq. (2) as Enc(m1) ⊡ m2). The two properties will be
extensively used to construct a secure keyword search scheme.

The Paillier cryptosystem is known to meet the indistinguish-
able under chosen plaintext attack (IND-CPA) security notion un-
der the decisional composite residuosity assumption.

2.2 Naïve Bayesian Filter
The naïve Bayesian filter (NBF) is based on the simple application
of Bayes’s rule. First, in the training phase, we compute the prob-
ability Pr(s |w) for each wordw as

Pr(s |w) = Pr(w |s) Pr(s)
Pr(w) , (4)

where Pr(w |s) is the conditional probability of the appearance of
the word w given that the email is a spam, Pr(s) is the probabil-
ity that spam email occurs in all emails (apriori), and Pr(w) is the
probability that the word occurs. The computed result Pr(s |w) is
the probability of the email being a spam given that the word w
appears in it. Note here that in an SNBF scheme, the training is
done independently of the classifying phase, since it is assumed
that the trained filter is public to the server.

To apply the model, assume that the incoming email contains
the wordsW = {w0, . . . ,wN−1}, let pwi denotes the learned con-
ditional probability Pr(s |wi ), the final probability that the email is
spam can be computed as

Pr(sMAP) =
∏N−1

i=0 pwi∏N−1
i=0 pwi +

∏N−1
i=0 (1 − pwi )

, (5)

where the numerator is the probability that the email is a spam
given the fact that all words in W simultaneously appear in the
email as a set of independent random events, the denominator
is the sum of the probability that the email is a spam given all
the words inW , and Pr(sMAP) refers to the maximum a posteriori
probability for the email being a spam (note here that we assume
Pr[s] = Pr[h] = 0.5 in the dataset. This value can be adjusted and
made public by the server). Since the multiplication results in very
small fractional numbers, a conventional way to calculate Pr(sMAP)
is to take the logarithm of both sides and rearrange the equation
as

η =
N−1∑
i=0

(logpwi − log (1 − pwi )) and (6)

Pr(sMAP) =
1

1 + e−η
. (7)

Equation (6) is essentially our target function to realize in a secure
manner, and we use ρi = logpwi − log (1 − pwi ) to simplify the
notation. The user should be able to compute η after the secured
classifications of the email.

3 SECURE EMAIL FILTERING: THE
ALGORITHM

3.1 Notations
We usew for input word, andw for the binary-decomposed vector
formed by bits in w . The bit-width of w , i.e., length of the vector
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Algorithm 1 The SNBF.Filter function.

Require: c ∈ Zℓn2 , {(v, ρv )}
1: for each vi ∈ {(v, ρv )} do
2: cmatchi = 0
3: for each bj ∈ vi , c j ∈ c and c j ∈ c do
4: cxnor = ((c j ⊡ bj )⊞ (c j ⊡ b j ))
5: cmatchi = cmatchi ⊞ cxnor

6: ri = cmatchi ⊡ ρi

7: Let r = [rN−1, . . . , r1, r0]
8: return r

Algorithm 2 The SNBF.Decrypt function.

Require: r ∈ ZNn2
1: ρ = 0
2: for each ri ∈ r do
3: mi = Paillier.Dec(ri )
4: if ℓ | mi then
5: ρ =mi/ℓ
6: return ρ

w, is denoted as ℓ. This bit-width also applies to the trained filter
V , which is a collection of word-probability pair (v, ρv ). Each vi
denotes a word, and ρi = logpvi − log (1 − pvi ) is the Bayesian
weight associated with vi . For w = {wℓ−1, . . . ,w0},wi means the
i-th bit of w . We use vi = {bℓ−1, . . . ,b0} to denote each bit of
vi . Thus, basically, we consider all elements in {v} and w to have
the same bit-width ℓ, which can be achieved by simple padding or
hashing. The total number of word-probability pairs inV is N , i.e.,
N = |V |.

3.2 Communication Protocol and Algorithmic
Construction

The basic setup of the SNBF is outlined in Fig. 1. Three par-
ties are involved in one execution of the algorithm: the email
sender Bob, the server Chelsea, and the email receiver Alice. As
Fig. 1 depicts, Bob initiates the communication by using the func-
tion SNBF.Encrypt to encrypt the email as two encrypted vectors
{c0, c1, . . . , cL−1} and {c0, c1, . . . , cL−1} (the need for cwill be later
explained), where (ci , ci ) represents the ciphertext of the i-th word
in the mail with a total of L words to be transmitted. The cipher-
texts are encrypted using Alice’s public key, and sent to Chelsea for
SNBF.Filter to classify. Each encrypted word (ci , ci ) will be clas-
sified according to the filter, and the results, {ri }, are then sent to
Alice, where SNBF.Decrypt is applied to decrypt each ri to obtain
ρwi . Eq. (6) is then used to calculate Pr(sMAP). In what follows,
the construction for each function is described. Note that our al-
gorithmic construction computes on a per-word scale; hence, the
repetitive application of the functions is required if multiple words
are sent.

SNBF.Encrypt(w): takes as input a word w , and outputs the
corresponding ciphertext cw . It simply breaks w into its binary
representation w = {wℓ−1, . . . ,w0} where wi ∈ Z2. wi and

its negated value wi are encrypted using Paillier.Enc. The out-
put will be two vectors cw = {cℓ−1, . . . , c0} where, as described,
ci = Paillier.Enc(wi ), and cw = {cℓ−1, . . . , c0} where ci =
Paillier.Enc(wi ).

SNBF.Filter(cw , cw ,V ): takes as input two vectors of ciphertexts
c and c, and the filterV . It outputs the probability-weighted result
rw . The detailed algorithm is shown in Alg. 1. Upon receiving a
pair of ciphertext vectors cw and cw , the algorithm starts to com-
pute a bit-wise homomorphic match between the incoming cipher-
text (ci , ci ) and its own plaintext words {v} inV . The filter function
contains two loops. The outer loop compares each word vi ∈ {v}
to the incoming word (cw , cw ). The inner loop from Line 3 to 6 is
evaluating a bitwise comparison between (cw , cw ) and vi (bit de-
composed vi ). The algorithm then multiplies the Bayesian proba-
bility weight ρi into the matching result cmatchi , forming the i-th
comparison result ri . The results are concatenated into a vector
r, which is the output of the function. A subtle difficulty here is
that ρi is a floating point number, and cannot be directly embed-
ded into the ciphertext (homomorphic constant multiplication can
only work with integers). Different from utilizing fixed-point rep-
resentations in existing approaches, we thoroughly test the accu-
racy of NBF and discovered that by simply rounding the floating
point number to the nearest integer, we can achieve almost no loss
in classification accuracy (1% average difference). The demonstra-
tion for accuracy test will be conducted in Section 5.

SNBF.Decrypt: takes as input a ciphertext vector r, output the
probability weight ρ if input word w matches any of the server
record, 0 otherwise. The algorithm for SNBF.Decrypt is sketched
in Alg. 2. The loop in Alg. 2 takes each result in r and decrypts it
using Paillier.Dec. The decrypted resultmi is then tested to see if it
is a match, by dividing the bit length ℓ = |w| intomi . The correct-
ness of this operation will be proved below, where we show that
by dividing ℓ from the decrypted mi , we can recover the integer
probability weight ρ associated with the wordw .

3.2.1 Correctness. A correctness proof for SNBF.Filter and
SNBF.Decrypt is required to show that SNBF works as an email
filter. First of all, SNBF.Encrypt is simple and the proof is left out
because the function is simply several application of Paillier.Enc,
which is correct as given. We use the following claim to construct
a proof for SNBF.Filter and SNBF.Decrypt.

Claim 1. Let ℓ be a prime, andmi = ρi · k for some integer k ∈
{0, · · · , ℓ}. Assuming ℓ ∤ ρi , if ℓ | mi , then ρi =mi/ℓ.

The claim follows trivially Euclid’s Lemma. However, an impor-
tant note is that, as later shown in Section 5, ρi is a small number,
and can be safely assumed to not be divisible (∤) by ℓ. The correct-
ness for SNBF can then be proved through the following Lemma.

Lemma 3.1. SNBF.Decrypt(SNBF.Filter(w)) = ρw if w ∈ V , 0
otherwise.

Proof. The important observation we make is that, since
ciphertext-plaintext multiplication is available in Paillier, we can
implement a perfect XNOR gate using PHE. Line 4 in Alg. 1 com-
putes a single bit cxnor by evaluating ((c j ⊡ bj ) ⊞ (c j ⊡ b j )),
and the truth table is sketched in Table 1. Line 5 then adds the
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Table 1: Truth Table for Homomorphic XNOR

c j c j bj b j ((c j ⊡ bj )⊞ (c j ⊡ b j ))
Enc(0) Enc(1) 0 1 Enc(1)
Enc(0) Enc(1) 1 0 Enc(0)
Enc(1) Enc(0) 0 1 Enc(0)
Enc(1) Enc(0) 1 0 Enc(1)

results of bitwise XNOR together into one sum. Here, the re-
sult will be an encryption of ℓ if all bits result in matches, and
{Enc(0), Enc(1), · · · , Enc(ℓ − 1)} if one or more bits result in mis-
matches. In Line 7 of Alg. 1, the weight ρi associated with vi is
embedded into the matching result. Thus, if w matches vi , ri =
Enc(ρi · ℓ). Otherwise, it is the encryption of the product of ρi and
some value in the mismatched sums. By applying Claim 1, if ri
represents a match, which means that the decryptedmi = ρi · ℓ,
diving ℓ into the decrypted result, as in Line 3 in Alg. 2 recovers
ρi . Otherwise,mi will not be devisible by ℓ by Claim 1, giving an
output of 0.

□

3.2.2 Security. In SNBF, what we want to protect is the content of
the email, i.e., w from Bob to Alice. Hence, we want to make sure
that the encrypted words are secure against Chelsea. Since PHE
is used through the process of computation, it becomes relatively
easy to see that the proposed scheme is IND-CPA against a honest-
but-curious server (Chelsea).

3.3 The Batch Filtering Technique
For emails, it is generally the case that multiple words are con-
cealed within. If SNBF.Filter is to be used as is, the main observa-
tion is that while a ciphertext can hold a huge integer (Zn where
n is at least 1024-bit integer), we are only using a tiny portion of it
(the computed ri is a product of ℓ and ρi , which will be on the scale
of at most 10 bits). Consequently, we can pack more bits into one
ciphertext for batch filtering, while not requiring any server-side
change in computation.

To make the batch technique easier to understand, consider the
following example. Let ℓ = 2, for two words w0 and w1, we have
w0 = {w01,w00} and w1 = {w11,w10}. During SNBF.Encrypt,
what we can do is to set c0 = Enc((w10 ≪ ⌈lg((ℓ+1)·max({ρ}))⌉)+
w00). Since ℓ = 2, if we assume max({ρ}) = 16, ⌈lg((ℓ + 1) ·
max({ρ}))⌉ = 6. We can see that the contents of c0, i.e., Dec(c0),
can be described as

Dec(c0) = 0 0 0 0 0w10 0 0 0 0 0w00
Dec(c0) = 0 0 0 0 0w10 0 0 0 0 0w00

Now consider we have a filter with only one word v = {v1,v0},
where v1 = 1 and v0 = 0. According to Alg. 1, line 4 computes

cxnor0 = ((c0 ⊡ 0)⊞ (c0 ⊡ 1)). (8)

In Paillier, we have c0 ⊡ 0 = c00 = 1, and 1⊞ (c0 ⊡ 1) = 1 · c10 = c0.
Thus, cxnor0 = c0 for the zeroth bit. Similarly, we can see that
cxnor1 = c1 for the first bit. We then compute the match bit as
cmatch = cxnor1 ⊞ cxnor0. If we look at the decrypted version of

Figure 2: The architecture of a single recursive layer of the
proposed RKMmultiplier.

this homomorphic operation, we can see that it is basically com-
puting the function

0 0 0 0 0w10 0 0 0 0 0w00
+ 0 0 0 0 0w11 0 0 0 0 0w01

Notice how both wordsw00 andw10 are simultaneously matched
withv , evenwith different first bit. Now supposew11 = 1,w10 = 0,
andw01 = 0,w00 = 0. The above equation evaluates to

0 0 0 0 0 1 0 0 0 0 0 1
+ 0 0 0 0 0 1 0 0 0 0 0 0
= 0 0 0 0 1 0 0 0 0 0 0 1

We assumed max({ρ}) = 16. Since we need ℓ ∤ ρv , we assume
ρv = 15 (The reason certain choice of ρ does not work in this
simple example is because ℓ is too small. In general, ℓ > 32, and
there will be no ρ ≤ 16 where ℓ divides ρ), line 6 in Alg. 1 embeds
the Bayesian weight into the result as

1 1 1 1 1 0 0 0 1 1 1 1

After decryption, we can examine the match/mismatch on a per-
bit scale. We first take 01111 = 15 out, and since 2 ∤ 15, it is a
mismatch. Then, for 11110 = 30, 2 | 30 = 15, which is a match and
the corresponding weight ρv = 15.

While we do not have enough space to provide a proof, the
batching technique is general and can be applied to as many words
as a ciphertext can contain. In addition, all modifications required
to deploy such a technique are all done to the encryption and
decryption procedures SNBF.Encrypt and SNBF.Decrypt. Hence,
the server does not even realize that multiple words are being
processed in parallel. Using our instantiation parameters later de-
scribed, we can embed around 100words into one pair of ciphertext
vector c and c, greatly improving the efficiency of the scheme.

4 HARDWARE ARCHITECTURE
To implement a fast multiplier that meets the need of SNBF, we
choose to use the recursive Karatsuba-Montgomery (RKM) mul-
tiplier based on the work in [6]. The major benefit of this ap-
proach is its flexibility and design simplicity. However, the work
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Figure 3: The general architecture of the proposed RKM
multiplier with the recursive layers unfolded.

by Chow et al. uses an unoptimized version of the RKM algorithm,
and only tested up to 512-bit multiplications due to the resource
limitation on FPGA. To better evaluate the practicality of the pro-
posed SNBF on a specialized hardware, we provide a full-custom
design for the RKM multiplier.

In this work, we used an optimized version of the Karatsuba
algorithm described as follows.

XY = (22k + 2k )z2 + 2k (X0 − X1)(Y1 − Y0) + (2k + 1)z0,
where z2 = X1Y1, z0 = X0Y0. Figs. 2 and 3 outline the hard-
ware architecture implementing a single recursive layer and over-
all architecture, respectively. For a single recursive layer, the al-
gorithm only requires four pipeline stages. Unfolding the recur-
sion down to 32-bit level, the number of required pipeline stages is
2 · 4 · lg(2k/32) + 2 in our example, since both the first and second
stages will have lg(2k/32) levels of recursion for themultiplication.
The third and fourth stages are single-stage operations, adding two
to the total number of stages. For SNBF, the number of modular
multiplications needed per filtering is quite large (over 70 K in our
instantiation, as shown in Section 5). Therefore, even if we have
a large number of pipeline stages, we can still get asymptotic sin-
gle cycle performance. However, implementing the Montgomery
reduction [14] algorithm requires three 2k-bit multiplications. In
this study, instead of instantiating three 2k-bit recursive Karatsuba
multipliers in parallel, we serialize themultiplications and use only
one 2k-bit multiplier. Hence, each 2k-bit modular multiplication
takes three cycles to complete.

5 EXPERIMENT
5.1 Experiment Setup
Throughout the experiment, we used the real-world Enron email
dataset parsed by [15]. The email dataset contains six sets of emails
that belong to six employees, pre-classified as ham or spam. The
accuracy of the filter is trained using Enron1 to Enron5 (total of
27,716 emails), and tested on Enron6 (total of 6,000 emails). We
also experiment on the best filter size N to minimize the amount
of computation required. The accuracy of the SNBF is measured in
ham and spam recalls, as in [15], which is traditional in measur-
ing email classification accuracy. If the ham recall is low, it means
a lot of ham emails are misclassified as spam emails, and similar
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Figure 4: Ham/spam recall
for different filter sizeN with
floating point ρ.
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Figure 5: Ham/spam recall
for different filter sizeN with
integer ρ.

analogy applies for spam recall. In general, users do not want low
ham recall, and is more tolerant towards a lower spam recall.

For cryptographic instantiations, we used the Paillier scheme
with 1024-bit key size, which is equivalent to an 80-bit security
level. As a result, we need to instantiate our hardware to deal with
2048-bit integer multiplications, making k = 1024. Consequently,
we have 50 pipeline stages in the design. We hashed the keywords
into 61-bit bit strings, thus ℓ = 61, which is a prime. 61 is cho-
sen such that enough word space (number of unique words) is re-
served.

The software version of SNBF is experimented using an Intel
Xeon E5-2630 2.3 GHz processor on a single core with 32GB mem-
ory. The 2048-bit RKM multiplier is synthesized on a commercial
65 nm low-power process node using a logic-synthesis tool [17].

5.2 Filter Accuracy
Figs. 4 and 5 are the results of the ham/spam recall when different
filter sizes (N ) are applied. The first important observation is that,
larger N has diminishing effect on the classification recall, even
if the filter is trained on different users’ email sets. This property
significantly reduces the amount of homomorphic computations
required for SNBF while not hurting the accuracy performance. In
evaluating the performance of SNBF, we chose to use N = 10000.

The second key result we found is that, while all existing stud-
ies related to NBF have been using fixed point representation for
ρ [5, 13] in Eq. (6), as Figs. 4 and 5 compare, a rounded ρ basi-
cally has no significant impact on classification recall. While the
maximum difference is by 3.8% in spam recall, which is itself in-
significant (as discussed in [15]), the average difference is around
1% for spam recall, and well below 1% for ham recall. By losing
one percent of accuracy on average, the efficiency is considerably
improved. Instead of converting the weights into 52-bit integers as
in [5], we can just round the exponents up and compute as is. In ad-
dition, since it is meaningless to have an extremely large exponent
(e.g., the difference between 1/(1+e16) and 1/(1+e32) is negligible),
we can set the maximum ρ to be less than or equal to 16 (the maxi-
mum ρ for all 10,000 filter words was found to be 17). By using this
technique, the proposed filter greatly reduces the complexity to ho-
momorphically combine the matching result and the weight ρ. We
only need at most 7 large integer multiplication (Enc(ℓ)3+2+1+0 for
Enc(ℓ)⊡15), instead of computing

∑51
i=0(Enc(ℓ)⊡2i ) (translates to

more than 1000 large integer multiplications) in [5], on a per word
scale. A more concrete analysis is provided in the next section.
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Table 2: Synthesis Result for RKMMultiplier

Bit Width Power Area (Gate Count) Delay
2048 49.5mW 18557560 69 ns

Table 3: Summary of the Performance Comparison SNBF
and Other Existing Works

[13] [5] CPU RKM
Ctxt size 487.5 KB 512 B 512 B 512 B
Time/Mult 3.48ms 9–29 µs 9–29 µs 207 ns
Time/Word 2.55 Ks 59.76 s 49.8ms 0.15ms

Power 165W 95W 95W 49.5mW
Energy/Word 420 KJ 5.67 KJ 4.73 J 7.42 µJ

5.3 Performance Comparison
As shown in Table 2, we were able to achieve 69 ns stage delay at
49.5mW with area at around 18.5M gates. Here, the stage delay is
the longest path between two stage registers, which is optimized
to be a single 32-bit multiplier. We achieve a throughput of 4.8M
2048-bit multiplications per second.

To put the hardware performance data in context, we com-
pare SNBF to the FHE-based scheme in [13] and PHE-based naiïve
Bayesian filter in [5] in Table 3. The SNBF result is the amortized
cost by assuming that 100 words are concurrently processed using
the batch technique mentioned in Section 3.

The total number of ciphertext multiplications (homomorphic
addition) required for filtering one encrypted word through the
10,000-word NBF is 734,147. The majority of the multiplications
comes from Line 5 in Alg. 1, where each result requires ℓ − 1 mul-
tiplications (61 K multiplications when N = 10000). In contrast,
without probability rounding, existing works require 9,026,264 ho-
momorphic operations per word filtering, which is almost 12x
more than SNBF. Themajority of the multiplications (8,956,264 out
of all 9 millions) comes from embedding the fixed-point probability
weight into the matched result, where each probability is encoded
using a (52+δ )-bit integer (we found δ to be 11 in SNBF). More im-
portantly, the probability rounding results in small bit-width of the
comparison results (lg(61 · 16) <10 bits compared to (63 + lg(61))
bits in [5]). Thus, even if existing works employ our batching tech-
nique, we can still batch 6.6x more words per ciphertext (100 com-
pared to 15) for concurrent processing. In combined, our SNBF im-
plementation consumes 1,200x less homomorphic operations than
existing works, which directly translates to speed improvement by
the same amount even on a CPU implementation.

Overall, the results indicate that the hardware-version of SNBF
can filter a word in 0.15 second, 33x faster than the CPU, 398,400x
faster than the existing PHE solution [5], and much faster than
FHE-based techniques. Furthermore, for the proposed RKM accel-
erator, we observe nearly 2,000 times power reduction from the
software. The time and power reductions combines to a 105x re-
duction in energy when the software and hardware implemen-
tations of SNBF are compared, and significant energy reduction
compared to existing approaches. Since the average email word
count is around 287 in the Enron6 dataset, our SNBF can classify
an average-length email within 0.5 s, well in the practical domain.

6 CONCLUSION
In this work, a secure email filter based on the naïve Bayesian
filter is proposed. The proposed SNBF relies solely on PHE, and
by employing a novel weight-embedding technique, our SNBF re-
quires much less homomorphic computations compared to exist-
ing works. In addition to the algorithm, we explore the design
space of hardware architecture that truly meets the demand of
HE. Through the experiment, our software construction is already
faster than existing FHE solutions by three orders of magnitude.
The hardware-based SNBF is able to process 100 words in 0.15 s,
which we consider to be a practical solution to secure email filter-
ing.
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