Filianore: Better Multiplier Architectures for LWE-based
Post-Quantum Key Exchange

Song Bian Masayuki Hiromoto Takashi Sato
Kyoto University Kyoto University Kyoto University
paper@easter.kuee.kyoto-u.ac.jp paper@easter.kuee kyoto-u.ac.jp paper@easter.kuee kyoto-u.ac.jp
ABSTRACT comes with this performance improvement, however, is the secu-

The (ring) learning with errors (RLWE/LWE) problem is one of
the most promising candidates for constructing quantum-secure
key exchange protocols. In this work, we design and implement
specialized hardware multiplier units for both LWE and RLWE key
exchange schemes to maximize their computational efficiency. By
exploiting the algebraic structure with aggressive parameter sets,
we show that the design and implementation of LWE key exchange
on hardware is considerably easier and more flexible than RLWE.
Using the proposed architectures, we show that client-side energy-
efficiency of LWE-based key exchange can be on the same order, or
even (slightly) better than RLWE-based schemes, making LWE an
attractive option for designing post-quantum cryptographic suite.

ACM Reference Format:

Song Bian, Masayuki Hiromoto, and Takashi Sato. 2019. Filianore: Better
Multiplier Architectures for LWE-based Post-Quantum Key Exchange . In
The 56th Annual Design Automation Conference 2019 (DAC ’19), June 2-6,
2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3316781.3317850

1 INTRODUCTION

As the National Institute of Standards and Technology (NIST) ini-
tiated the discussions on the standardization of quantum-resistant
public-key cipher suite [11], serious research efforts were de-
voted in evaluating and improving the performance of crypto-
graphic constructions based on the (ring) learning with errors
(RLWE/LWE) problem [1-3, 13]. Along with the well-established
security reductions [10, 15], recent advances show that the perfor-
mance of (R)LWE-based key exchange can be as efficient as tradi-
tional schemes such as RSA or elliptic curve cryptography [1, 2],
making (R)LWE-based algorithms an attractive candidate for the
age of post-quantum security.

The ring version of LWE, RLWE, is generally considered much
more efficient than generic LWE (also known as standard LWE).
RLWE reduces the n-by-n public-key matrix of generic LWE
down to an n-by-1 vector [10], and also allows for efficient per-
coordinate plaintext packing that leads to efficient key exchange
with only one set of polynomial coefficients [1]. The cost that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06....$15.00
https://doi.org/10.1145/3316781.3317850

rity concern, as the special lattices of RLWE do present to be easier
than generic lattices.

Despite the security concern, RLWE dominates the literature for
its efficiency, especially in the field of design explorations of hard-
ware primitives [6, 9, 14, 16]. Due to the emerging nature of the
field [12], most existing approaches either optimize the public-key
encryption scheme based on RLWE on embedded processors [9],
or prototype their hardware designs using field programmable gate
array (FPGA) devices [14, 16]. In fact, the few hardware implemen-
tations for LWE-based cryptosystem available, namely [7, 8], also
prototyped their designed hardware on Xilinx Artix-7 and Spartan-
6 FPGAs. Since FPGA devices are integrated with high-speed digi-
tal signal processing (DSP) hardware multiplier, almost all existing
works employ at least one of the DSP units, and leave the archi-
tectural design for the computational unit completely untouched.

In this work, we propose Filianore, a hardware accelerator for
Frodo [2], the-state-of-the-art LWE key exchange scheme, and R-
Filianore for NewHope [1], the latest RLWE-based key exchange
scheme. Instead of simply adopting DSP units, we exploit the al-
gebraic difference between the two hardness assumptions (LWE
and RLWE), and instantiate distinct hardware architectures for the
respective computations. Through the experiment in Section 5,
we find that compared to existing FPGA-based implementations,
application-specific integrated circuit (ASIC) multplier with opti-
mized parameter selection gives us better throughputs by nearly
40x compared to the most recent art [8]. For Frodo-1, the slightly
modified version of the recommended parameters suggested in [2],
we were able to reduce the average energy consumption of the
client-side LWE key exchange by roughly 6 times. For the proposed
aggressive parameters, the energy consumption is furhter reduced
by 3x (a total of 18x) to as low as 34.97 n]. This performance is
even better than R-Filianore, which averages around 35.04 nJ per
key exchange. While generic LWE is still not quite as efficient as
RLWE when memory bandwidths are concerned, we significantly
reduced the energy gap between generic LWE and RLWE com-
pared to previous studies. We summarize our contributions as fol-
lows.

e Better Hardware Primitives for (R)LWE Key Ex-
change: As [12] points out, previous design explorations
for (R)ILWE have been exclusively on embedded processors
or FPGA. In this work, we provide careful design explo-
rations for the computational units used in both generic and
ring LWE. As later shown, even restricted to key exchange
schemes, the design space can still be highly application-
dependent.

e Generic versus Ring LWE: For its practical efficiency,
RLWE is generally preferred over generic LWE for almost

https://doi.org/10.1145/3316781.3317850
https://doi.org/10.1145/3316781.3317850
https://doi.org/10.1145/3316781.3317850

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

Alice Bob
seeds «— U({0, 1}°)
A «— Gen(seeda)
S,E «— X(Z;Xﬁ)
seedy,B
B« AS+E A «— Gen(seeda)
S/, E X(zqﬁxn)
B « S'A+E
E’ X(Zqﬁxi)
Ve~ SB+E"
B/,C
— C — (V)r
K « rec(B'S, C) K« [V]yr

Figure 1: Key exchange from generic LWE proposed by [2].

all cryptographic applications based on the LWE problem.
In this work, we try to reduce the performance gap by
adopting ASIC multiplier architectures that utilize the in-
trinsic algebraic simplicity and flexibility of generic LWE
for post-quantum key exchange schemes. Through the ex-
periment, we show that generic LWE can be of practical
use, and is more secure with the aforementioned worst-case
hardness reductions.

e Instantiation of Asymmetric LWE Key Exchange:
As [2] suggests, LWE-based key exchange protocol is flexi-
ble, in the sense that the amount of client- and server-side
computational powers can be highly unbalanced (asymmet-
ric). However, no parameter instantiations or evaluations
are available in the original work [2] and the recent im-
plementation [8]. As an effort to lift the client-side com-
putational burden, we propose and compare different sets
of asymmetric parameters, and show that under such con-
struction, generic LWE can be as energy-efficient as RLWE.

The rest of this paper will be organized as follows. First, in Sec-
tion 2, we provide preliminaries on the (R)LWE key exchange
schemes. Second, we discuss and present our parameter instantia-
tion for the respective schemes in Section 3. Third, the hardware
architecture is described in Section 4 and the synthesized results
are compared in Section 5. Finally, we conclude our paper in Sec-
tion 6.

2 PRELIMINARIES
2.1 Notations

Throughout the paper, we use the standard notationa € Z; torefer
to a vector a who has a dimension of n and elements drawn from
Zg, the residual class of some integer modulus g. Vectors that have
been transferred to the frequency domain through the number-
theoretic transform (NTT) are noted with a hat, e.g., & = NTT(a),
and the coordinate-wise multiplications between such vectors are
in the form 4 o b. Matrices are written in capital letters without

bold (A), and Ig x is the shorthand for log, x.

2.2 LWE-based Key Exchange

A generic LWE instance is parameterized by (n, g, y), where n is
the lattice dimension, g a modulus, and y a distribution parameter-
ized by o. For generic LWE, we fixed g to be a power of two, and o a

Song Bian, Masayuki Hiromoto, and Takashi Sato

Alice Bob
seed, «— U({0, 1}%)
a « Gen(seedy,)
8, & «— NTT(x(Z3))

beaos+eé seedab a «— Gen(seed,)
s/, ej — NTT(x(Z3))
b—aod +¢é&
e’ {((Z;)
v INTT(bo&)+e”
Ve INTT(I;’ o8) & ¢ « HelpRec(v)

K « rec(v, ¢) K « rec(v, ¢)

Figure 2: Key exchange from RLWE proposed by [1].

set of custom-defined Gaussian-like probability density functions
specified in Table 1 of [2].

The complete key exchange protocol proposed by [2] for generic
LWE is outlined in Fig. 1. Here, we give a brief summary on the pro-
tocol. First, Alice generates a seed seed4 for the generation of the
public key A. The generation algorithm Gen is implemented using
the AES128 algorithm in [2], where U({0, 1}*) is a function that
uniformly samples an s-bit (s = 128) integer. Alice then samples a
secret vector and an error vector S, E € Z"™™ where each element
in the matrices is drawn from the distribution y. After computing
the result B = AS+E, Bis sent to Bob. The security of the secret key
S is guaranteed by the decisional LWE problem. Bob essentially
repeats the same process, with an additional step of generating a
reconciliation matrix V = S’B + E”, where V e Z™>n
secrets from both parties. V is then used to derive a shared key K
for Alice and Bob through the reconciliation algorithms (V)2r, rec
and [VTyr.

The important note here is that, the only heavy computation in
this type of generic LWE construction is the step involving mul-
tiplication by the matrix A. Since A is an n-by-n matrix, multipli-
cation by A requires at least n? multiplications, and n is a rela-
tively large integer. m and 7 are relatively small integers, where the
equality rmn = ¢ is required for deriving £-bit key K (n = 752, =
256,r = 4, and m = n = 8 for the recommended parameters set
in [2]). Thus, while Alice needs to perform two multiplications AS
and B’S, AS would require n?7, while B’S only requires nm multi-
plications. Furthermore, the aforementioned key-reconciliation al-
gorithms are simple operations (multiply or modulo by a power of
2) on a very small matrix of dimension m X 71, and we safely ignore
the performance impact of this step on the whole procedure.

contains

2.3 RLWE-based Key Exchange

RLWE has a similar construct to LWE, where the parameters are
(n, g, x). For the sake of simplicity of presentation, we use the same
notations for LWE and RLWE, while the underlying mathematical
meanings differ. Here, n denotes the degree of some irreducible
polynomial f(x), which is functionally equivalent as the number
n in generic LWE (specifies a lattice dimension). g and y also serve
similar purpose as their previously defined counterparts.

The RLWE-based key exchange protocol is outlined in Fig. 2.
We slightly modified the communication protocol for the ease of

Filianore: Better Multiplier Architectures for LWE-based Post-Quantum Key Exchange

Table 1: Parameter Instantiations

q n dist. o

Frodo-Rec | 2P 752 | x| 175
Frodo-1 20 752 | y1 | 175
Frodo-l | 2048 | 570 | x2 1

NewHope | 12289 | 1024 | {1 | 2.83

EEIENENA]
== oo 3
Do

=
o)
MR EE

Table 2: Probability Mass Function for y; and y»

0 +1 +2 +3 +4 | 5 | +6
x1 (Frodo-I) | 19304 | 14701 | 6490 | 1659 | 245 | 20 1
x2 (Frodo-II) 1570 990 248 24 1

Table 3: Security and Correctness Results for the Instanti-
ated Parameter Sets

F-I F-II | F-Rec | NewHope
P.Q. Security [bit] | 143 | 137 | 143 > 256
Correctness [lg] -36.5 | -43 | -36.5 -61

comparison with LWE, and it can be observed that the two proto-
cols work almost identically. One distinct difference is that RLWE
works on n-dimensional vectors that needs the special NTT and
INTT treatment. We delay the concrete parameter instantiation,
and thus detailed performance comparison into the next Section.
Nevertheless, compared to LWE, RLWE has much smaller public
key size (a € Z compared to A € Zg*"). This simplifies all subse-
quent computations, making RLWE asymptotically faster.

3 PROPOSED PARAMETER INSTANTIATION

In this section, we first instantiate Frodo [2] under different pa-
rameter sets, and then provide the parameter instantiation for
NewHope [1] with discussions on its efficiency.

3.1 Parameter Instantiation for LWE

For the LWE-based key exchange protocol in Fig. 1, we provide
three sets of parameter instantiations, Frodo-Rec, Frodo-I, and
Frodo-II. Here, a set of detailed analyses of the security and failure
probability of each parameter set is presented.

In general, LWE cryptography is parameterized entirely by the
parameters (n, g, o). The key trade-off is between security and cor-
rectness, where larger n and o give better security, but result in
more failed key reconciliations. In contrast, larger g reduces the
security level (in O(q!/™)), but exponentially increases the success
probability of key reconciliation. In addition, n is the main parame-
ter that affects the computational efficiency of LWE. In this work,
we base our concrete security analysis on the original work [2],
where the bit security is calculated from 20-2650 with 0.265 the
best known constant for the post-quantum version of the BKZ al-
gorithm [4]. We then determine the least viable b which allows
BKZ to yield a successful attack (details can be found on page 11-
12 in [2]). For correctness, as suggested in Claim 3.2 in [2], as long
as the (absolute) distance |e| between each entry of B’S and C is
less than ¢/2"*2, we have rec(B’S,C) = |V]ar, and the two par-
ties derive the same key K. We can use the continuous Gaussian to

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

bound the tail probability of the discrete Gaussian, i.e.,

r+2
M))

O¢

Pr(le] > q/2"**)] = 2- CD(

where @ is the cumulative distribution function of a standard nor-
mal. The combined standard deviation o, describes the tail behav-
ior of the Gaussian errors presented in the product S’B and B’S,
where two Gaussian variables of variance ¢ are multiplied and
added together. Combining with the E”” added for Bob, we can cal-
culated o. as o2 = 2nc* + 2.

The overall parameter instantiaions, error distributions, and se-
curity and failure probability estimations are summarized in Ta-
ble 1, Table 2, and Table 3, respectively. Here, P.Q. security denotes
post-quantum security. Frodo-Rec is the recommended parameter
set in [2] with CPU implementation in mind, and Frodo-I is the
unbalanced version of Frodo-Rec. In Frodo-I, we set n = 1, and we
are essentially computing As. This translates precisely into 565,504
15-bit integer multiplications. Compared to Frodo-Rec, Frodo-I re-
duces the amount of computations by 8x for Alice, but causes an
8x increase for Bob.

We present Frodo-II as the more aggressive parameter instance.
It essentially puts as much computational burden to Bob as possi-
ble, and let Alice do the minimum amount of work. By decreasing
the size of q, we derive fewer bits of keys per entry in the matrix V,
which requires (either Alice or) Bob to produce even more secret
vectors to compensate. The benefit of having a smaller q is sig-
nificant: smaller ¢ means smaller n, which leads to smaller cumu-
lative error causing less decryption failures, and eventually, even
smaller q. For Frodo-II, Alice only needs to compute 324,900 11-bit
multiplications, with provable 128-bit post-quantum security and
improved failure probability. We note that since the exchanged key
is only 128-bit post quantum, Frodo-II is as secure as Frodo-I and
Frodo-Rec. Combining this parameter set with the specially de-
signed hardware, we show that for Alice, the core matrix-vector
multiplication for LWE and RLWE can be computed equally effi-
cient.

Note that, for Alice who only needs to compute the matrix-
vector product against one secret vector, a certain number of rows
in A are actually multiplied by zero. As Table 2 indicates, according
to the probability density function that generates these secret ele-
ments, nearly an average of 29.5% of such elements will be zeroes
for y; (D4 in [2]) used in Frodo-I, and 38.3% for y; (D3 in [2]) in
Frodo-II. By avoiding the actual need for multiplying and adding
these zeroes, we can further reduce the number of multiplications
by exactly 29.5% to 38.3%, depending on the parameter instantia-
tions. This approach has the drawback that a side-channel adver-
sary may be able to obtain the exact number of zeroes in the secret
vector. However, as long as the adversary does not know which
entry is zero, the lattice dimension is retained, and the security
of the scheme will not be tempered. In fact, some post-quantum
LWE constructs set the number of zeroes in the secret vector to be
a fixed and public value [5].

Lastly, note that Alice may not always be the client. If the client
is a full-fledged desktop computer, and the server is an energy-
efficient data center concurrently handling millions of connec-
tions, we can reverse the role to ease the server-side computation,
with potential benefit such as improved server response time.

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

3.2 Parameter Set for RLWE

The parameters provided in Table 1 for RLWE are directly taken
from NewHope. We omit the formal mathematical background and
only point out some of the problems related to this parameter set-
ting.

The first problem we have is that n has to be a power of 2. This
limitation means that it becomes hard to balance between security
and efficiency. As given, parameters in Table 1 provides a post-
quantum security of 256 bits. However, since the scheme shares
a 256-bit key, which only provides 128-bit post-quantum security
for the subsequent communications, this level of security is clearly
an overkill. Second, arithmetics for RLWE are also more difficult
to implement on specialized hardware. After applying NTT, the
numerical range for elements in s, e, which were originally sam-
pled from Gaussian distribution with small variance, become uni-
form across the 14-bit range. Combined with the need to perform
Montgomery reduction (for q is not a power of 2), RLWE inevitably
requires a much more complexed design.

4 PROPOSED HARDWARE ARCHITECTURE
4.1 Filianore

The proposed architecture for the computing unit used in generic
LWE-based key exchange is shown in Fig. 3. Our observation is
that all multiplications in generic LWE are between some arbitrary
lg g-bit number, and a “small” number drawn from a Gaussian-
like distribution. The range of this number is precisely defined in
Table 2. In both y; and y», this “small” number does not exceed
6. Hence, the idea here is simple: multiplications by such small
numbers can be done through shifts and additions. Furthermore,
all multiplications by a number less than 7 can be done through
exactly one addition. Thus, the “multiplier” unit in generic LWE
can be realized by a single adder with two multiplexers. Although
we can further reduce the hardware complexity by assuming that
only y will be used (the maximum input from s is 4 in this case),
this optimization loses compatibility of different parameter sets.
Since having a slightly smaller multiplexer gives us marginal per-
formance benefit, we did not perform this optimization on the pro-
posed design.

The complete system for computing AS and B’S in Fig. 4 illus-
trates the simplicity of Filianore. An extra adder is used to per-
form the accumulation of matrix products, and we can also use the
system as is to perform plain integer additions such that AS + E
can both be computed on Filianore (by setting a multiplication by
1). We will delay the performance discussion into the next section
where we synthesize the design, but this succinct design is clearly
small in area, low in power, and highly parallelizable.

To parallelize the design, there are two approaches available.
First, in Fig. 5, the a input is shared among all computational units,
whereas the s is different for each. The benefit of this approach is
that it minimizes memory bandwidth while retaining paralleled ef-
ficiency. Since the secret integer is only 4-bit wide (Igs = 3 with
an additional sign bit), even if we set the degree of parallelization
to be k = 16, the input bus will still be 64 + lg g bits. The drawback
and the reason that Alice cannot use this method is that it relies on
the fact that the secret matrix S has dimension n X k where k > 1
strictly. For Alice where the secret is a vector, i.e.,s € ZZXl, there is

Song Bian, Masayuki Hiromoto, and Takashi Sato

Table 4: Operational Modes for R-Filianore

opo | op1 op2
Mode i) s 3186 0
Mode ii) | alj] 2] alj+t]
Mode iii) a b é

Algorithm 1 Cooley-Tukey butterfly from [16].

Require: a[j],al[j +t], ©
1: Uealj],Veaj+t] o
2 aljl < U+V
alj+t]<U-V

Algorithm 2 Montgomery reduction for R = 218 from [1].

Require: p
t: u = (p-12287) mod 2! - 12289
2 p=(@+u)/2®

Algorithm 3 Short Barrett reduction from [1].

Require: p
t u=(p-5)/2'°
2p=p—-u

no room for parallelization using different secret vectors. In such
case, we can still use the second approach, where we just stamp
the architecture in Fig. 4 k times for k-degree parallelization. This
approach requires much larger memory bandwidth when k gets
larger (320-bit when k = 16), and can be deployed if latency is ex-
tremely important. However, as [2] explains, for a typical HTTPS
connection based on TLS, a single unit of Filianore fulfills the com-
putational demand for Alice.

4.2 R-Filianore

Since all previous RLWE implementations we found avoid design-
ing the core computational unit, to enable fair comparison, we also
propose R-Filianore, an accelerator for RLWE-based key exchange.
Our proposed architecture shares similarity with [16], but without
a convenient DSP unit, we need to rethink how modular multipli-
cation should be realized.

The designed accelerator is sketched in Fig. 6. We adopted the
optimization techniques suggested in [1], where all operations are
carried out on unsigned integers in the Montgomery form. All
operands that are read from or written to the memory are of 14-
bit length. This is achieved through two consecutive reductions:
the Montgomery reduction brings 32-bit integers down to 14 bits,
and the short Barrett reduction is a light-weight unit that brings
any 16-bit number down to 14 bits. This structure of a two-level
reduction is distinct compared to the CPU implementation in [1],
where additional reductions mean additional CPU cycles. This is
also the reason why, instead of Gentleman-Sande (GS) butterfly,
we utilized CT butterfly from [16]. The CPU-based implementa-
tion can have 32-bit additions and multiplications for free, but this
is not the case for specialized hardware. We point out that in GS
butterfly used by [1], the maximum input to the multiplier can be

Filianore: Better Multiplier Architectures for LWE-based Post-Quantum Key Exchange

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

LWE

G) Sign— A —» sign

Igs

LWE
Multiplier

LWE
Multiplier

v
M

MultAcc LWE
s[0]— MultAcc
lgs lgq
LWE

Figure 3: Proposed hardware

multiplier for generic LWE. unit for generic LWE.

op,
0
Py Mont.
28 | Red.
op,
14

op,

Figure 6: Proposed hardware accelerator for RLWE.

p—=
22

Mont. Red.

Figure 7: Hardware Montgomery reduction unit for a fixed
g = 12289 and R = 218,

69634, which is beyond 16 bits. Whereas, in R-Filianore, all input
and output operands are strictly 14-bit.

This cryptographic processing unit is designed to operate un-
der three types of arithmetic modes: i) converting the secrets into
Montgomery form, ii) the Cooley-Tukey (CT) butterfly outlined in
Alg. 1, and iii) the coordinate-wise multiplication and addition in-
volved in computing a o § + é. Previous works have only focused
on the design exploration for mode ii), for they either adopts a
DSP that internally performs modular reduction [16], or works on
general-purpose processors where i) and iii) are trivial.

Table 4 indicates the assignments for inputs opg, op1, op2 under
three different operational mode. For mode i), we multiply the 14-
bit input operand s by 3186 = (2!8)? mod 12289. This operation
is to bring s into Montgomery domain by multiplying s with R?,
where R = 2!8, and Montgomery-reduce to sR? through the Mont-
gomery reduction unit illustrated in Fig. 7. In mode ii), computa-
tions for Alg. 1 can be carried out in a single pipelined cycle. These
two steps essentially perform one NTT operation required in Fig. 2.
Lastly, we compute coordinate-wise multiplications and additions
in mode iii). By these three modes, all heavy computations in Fig. 2
can be performed on R-Filianore.

Finally, we make a short note on the efficiency modular reduc-
tion units. As Fig. 7 shows, we optimized these reductions to work

Figure 4: Proposed multiply-accumulate

lgs k parallel
a———H :

tea LWE
s[k—1] MultAcc [

Igs
Figure 5: Parallelized multiply-

accumulate units for generic LWE.

Table 5: Results of Hardware Implementations

Delay [ns] | Area [NAND2] | Power [yW]
Filianore-I 2.8 1007 60.8
Filianore-II 2.5 639 48.1
Filianore-Rec 3.0 5822 385
R-Filianore 5.5 8229 323

Table 6: Latency, Energy Consumption and Memory Band-
width Comparison for Alice

FI FII | F-Rec | RF B
L[ms](g=1) | 1.718 | 1.178 | 1.715 | 0.1084 | 40.01

L [m5S] (g = Gmax) | 1.211 | 0.7271 - . -
EMm](g=1) 1045 | 56.68 | 660.1 | 35.04 .

E [nJ] (g = gmax) | 73.64 | 34.97 - - -
Read [KiB] 1457 781.1 3358 89.23 -
Write [KiB] 1530 | 1.081 | 1425 | 61.87 B

on a specific g, namely ¢ = 3 - 212 + 1 = 12289. Thus, multipli-
cations are computed as consecutive additions, e.g., p - 12289 =
(p + 2p) - 2'2 + p. Due to space constraint, we omit the architec-
ture for short Barrett reduction, which shares a similar structure
to Fig. 7. Since these units are optimized for a fixed modulus, we
gain efficiency at the cost of flexibility.

5 HARDWARE IMPLEMENTATION AND
COMPARISON

The architectures shown in Fig. 5 and Fig. 6 are synthesized on
a commercial library of a 65 nm low-power process node using a
logic-synthesis tool [17], and the power is analyzed by [18]. The
synthesized results are summarized in Table 5. Here, F-I, II, and Rec
are shorthands for instantiating the parameter sets Frodo-I/II/Rec
on Filianore, and R-F means R-Filianore. The delay in Table 5 refers
to circuit delay, which is different from the key-exchange latency
later discussed.

To compare the actual performance, we calculate the energy
consumption for (R-)Filianore over one set of key exchange. The
latency for Frodo based on Filianore is calculated as

L=g~(nzﬁ+n+nmﬁ)-2.8. (2)

The first term n27 + n is the cost of AS + E, and nm 1 for B’S. Note
thatin F-land I, nis1,and S = s € Z;. We have a constant
g, which is the average number of zeroes in Alice’s secret vector.

We take gmax = 0.705 for Frodo-I and gmax = 0.617 for Frodo-II.

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

Computational latency for NewHope on R-Filianore is
n n
L:(2n+2-§lgn+2n+§1gn)-5.5. 3)

Here, the first 2n represents costs for transforming errors s, e into
Montgomery form. We then need to perform two NTT operations
to map s, e into §, &. Note that the transformation of public key a
is not needed, for a uniformly distributed vector is still uniformly
distributed in the frequency domain in Montgomery form. The sec-
ond 2n refers to computing 4 o § + € and b’ 0 8, and the final term
is the cost of computing INTT.

The latency, memory consumption and energy consumption for
(R-)Filianore are summarized in Table 6, our results are compared
with the most relevant work in [8]. We calculate the energy con-
sumption using the equation E = L - P, where L is the latency and
P is the power in Table 5. Although LWE-based constructions are
generally slower in delay, due to the simplicity of the proposed ar-
chitecture, the energy efficiency is comparable between LWE and
RLWE for F-I and II, and the area is 8 to 12x less. For the min-
imal parameter set F-II, we see that a generic LWE instance can
be even slightly more energy-efficient than RLWE. On the other
hand, in either case, under design-specific optimizations, we are
much more efficient than CPU-based approaches (103 to 10 en-
ergy reduction). Finally, while generic LWE consumes extensive
memory-read bandwidth, since it only writes every n cycles, there
are considerably less writes compared to read (O(n) for write). On
the other hand, since the NTT writes two outputs per butterfly,
more writes are generated (O(nlog n)).

The proposed multiplier achieves much better throughput than
the existing FPGA-based design in [8], due to custom architecture
and aggressive parameter instantiation. We also note that focus-
ing on the multiplier architecture, Filianore is much more energy-
efficient than existing studies on generic LWE. For example, the
design in [7] is 28x slower in latency while having a similar power
consumption compared to [14], on a per-bit encryption scale. Con-
versely, F-I and II have similar energy consumptions compared to
R-Filianore. This performance gain comes from the faster clock and
less power consumption of the proposed architectures. Therefore,
although generic LWE is still less efficient overall when memory
bandwidths are considered, the performance gap can be reduced
by adopting Filianore-like multiplier architectures.

Lastly, we note that as explained in [2], the latency for key ex-
change has diminishing impact on the connection speed for a real-
world work load. Since our implementation is almost as fast as the
CPU implementation in [2], it is likely that a single-unit Filianore
is practical enough to perform LWE-based key exchange for real-
world HTTPS connections. Furthermore, instead of a standalone
co-processor, the designed unit can easily be integrated into an
embedded processor as an extension to its instruction set archi-
tecture, where existing data buses are generally adequate for the
small amount of data per cycle we require (15 to 20 bits).

6 CONCLUSION

In this paper, we proposed (R-)Filianore, a set of hardware designs
for the (R)LWE-based key exchange algorithms. By carefully ex-
ploiting the algebraic structure of generic LWE, we show that un-
der the asymmetric setting, client-side computations for LWE be

Song Bian, Masayuki Hiromoto, and Takashi Sato

as energy-efficiency as RLWE, with an extra area reduction of 8-
12x. We conclude that given its flexible nature and solid security
reduction, generic LWE remains competitive against RLWE for the
post-quantum age.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI Grant
No. 17H01713, 17J06952, and Grant-in-aid for JSPS Fellow (DC1).
The authors also acknowledge support from VLSI Design and Ed-
ucation Center (VDEC), the University of Tokyo in collaboration
with Synopsys, Inc.

REFERENCES

[1] Erdem Alkim, Léo Ducas, Thomas Péppelmann, and Peter Schwabe. 2016. Post-
quantum Key Exchange-A New Hope.. In USENIX Security Symposium. 327-343.

[2] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. 2016. Frodo: Take off
the ring! practical, quantum-secure key exchange from LWE. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1006-1018.

[3] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. 2015. Post-
quantum key exchange for the TLS protocol from the ring learning with errors
problem. In Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 553-570.

[4] Yuanmi Chen and Phong Q Nguyen. 2011. BKZ 2.0: Better lattice security esti-
mates. In International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 1-20.

[5] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yong Soo Song. 2016. Lizard:
Cut off the Tail!//Practical Post-Quantum Public-Key Encryption from LWE and
LWR. IACR Cryptology ePrint Archive 2016 (2016), 1126.

[6] Norman Géttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and
Sorin Huss. 2012. On the design of hardware building blocks for modern lattice-
based encryption schemes. In International Workshop on Cryptographic Hard-
ware and Embedded Systems. Springer, 512-529.

[7] James Howe, C Moore, Maire O’Neill, Francesco Regazzoni, Tim Giineysu, and
Kevin Beeden. 2016. Lattice-based encryption over standard lattices in hardware.
In Proceedings of the 53rd Annual Design Automation Conference. ACM, 162.

[8] James Howe, Tobias Oder, Markus Krausz, and Tim Giineysu. 2018. Standard
Lattice-Based Key Encapsulation on Embedded Devices. IACR Transactions on
Cryptographic Hardware and Embedded Systems (2018), 372-393.

[9] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Grof3schadl, Howon Kim, and

Ingrid Verbauwhede. 2015. Efficient Ring-LWE encryption on 8-bit AVR pro-

cessors. In International Workshop on Cryptographic Hardware and Embedded

Systems. Springer, 663-682.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and

learning with errors over rings. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques. Springer, 1-23.

NIST. 2018. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography. (2018).

Accessed: 2018-04-20.

Tobias Oder, Tim Giineysu, Felipe Valencia, Ayesha Khalid, Maire O’Neill, and

Francesco Regazzoni. 2016. Lattice-based cryptography: From reconfigurable

hardware to ASIC. In Integrated Circuits (ISIC), 2016 International Symposium

on. IEEE, 1-4.

Chris Peikert. 2014. Lattice cryptography for the internet. In International Work-

shop on Post-Quantum Cryptography. Springer, 197-219.

Thomas Poppelmann and Tim Giineysu. 2013. Towards practical lattice-based

public-key encryption on reconfigurable hardware. In International Conference

on Selected Areas in Cryptography. Springer, 68-85.

Oded Regev. 2009. On lattices, learning with errors, random linear codes, and

cryptography. 7. ACM 56, 6 (2009), 34.

[16] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,

and Ingrid Verbauwhede. 2014. Compact ring-LWE cryptoprocessor. In Inter-

national Workshop on Cryptographic Hardware and Embedded Systems. Springer,

371-391.

Synopsys, Inc. 2013. Design Compiler I-2013.06. Synopsys, Inc.

Synopsys, Inc. 2013. PrimeTime PX H-2013.06. Synopsys, Inc.

[10

[11

[12

(13

[14

[15

==
&2

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

