DArL: Dynamic Parameter Adjustment for
LWE-based Secure Inference

Song Bian, Masayuki Hiromoto, and Takashi Sato
Deptartment of Communications and Computer Engineering, School of Informatics, Kyoto University
Yoshida-hon-machi, Sakyo, Kyoto 606-8501, Japan
E-mail: paper@easter.kuee.kyoto-u.ac.jp

Abstract—Packed additive homomorphic encryption (PAHE)
based secure neural network inference is attracting increasing
attention in the field of applied cryptography. In this work, we
seek to improve the practicality of LWE-based secure inference
by dynamically changing the cryptographic parameters depend-
ing on the underlying architecture of the neural network. First,
we develop and apply theoretical methods to closely examine
the error behavior of secure inference, and propose parameters
that can reduce as much as 67% of ciphertext size when
smaller networks are used. Second, we use rare-event simulation
techniques based on the sigma-scale sampling method to provide
tight bounds on the size of cumulative errors drawn from
(somewhat) arbitrary distributions. Finally, in the experiment,
we instantiate an example PAHE scheme and show that we can
further reduce the ciphertext size by 3.3x if we adopt a binarized
neural network architecture, along with a computation speedup
of 2x-3x.

I. INTRODUCTION

The quantum-secure learning with errors (LWE) conjec-
ture appears to be one of the most popular and powerful
cryptographic hardness assumptions that are established in
recent years. Along with its provable security reductions,
LWE is known to enable efficient implementation of classic
and advanced cryptographic primitives, including (somewhat)
fully homomorphic encryption (FHE) [1]-[3], identity- and
attribute-based encryptions [4], [5], functional encryption [6],
and secure multi-party computation [7], [8].

Despite theoretical advances, the concrete security and
correctness analyses are somewhat left out in prior arts. This
is partially due to the fact that current LWE parameters
are usually instantiated against best-known attacks, instead
of in the theoretically secure domain [9]. Recent advances
establish evaluation frameworks (e.g., [10]) to allow for fast
and thorough analysis on the bit security of a particular set of
parameters. On the other hand, the correctness analysis is still
somewhat case-by-case. For example, even in a simple key
exchange scheme, substituting a standard discrete Gaussian
distribution by a binomial distribution requires a sophisticated
correctness analysis on the target product distribution [11].
For advanced schemes such as homomorphic encryption (HE),
the error analysis is further complicated by the fact that
the resulting error distribution is dependent on the exact
homomorphic evaluation being carried out.

In this work, we propose DArL, a dynamic parameter adjust-
ment framework for LWE-based HE schemes. DArL targets
on exploiting the unused correctness margin to improve the
computational and communicational efficiency of HE without
security loss. The proposed framework consists of two main

techniques: 1) application-specific theoretical derivations for
error bounds, and ii) a fast empirical method for simulating
rare failure events. As a proof-of-concept, we focus on the
BFV cryptosystem [2], [3] adopted in Gazelle [12], where
the HE scheme serves as a fundamental design element in
implementing secure neural network inference. First, we apply
theoretical bounds to examine the error behavior of BFV in
Gazelle, and minimize the unused error margin by dynam-
ically switching parameter sets during the inference stage.
Second, we adopt the sigma-scaled sampling technique [13]
to obtain the exact decryption failure probability, which is
important in fine-tuning the parameters by techniques such
as approximate computing [14]. In the experiment, we apply
DATrL on the parameter sets instantiated in Gazelle, and inspect
its error behavior when classifying specific datasets such as
MNIST [15]. By dealing with a smaller ciphertext modulus g,
we observe that for some network architecture, we can reduce
the ciphertext size by as much as 67%. More importantly,
by switching to hardware-friendly network architectures such
as binarized neural network (BNN) [16], a further 2x-3x
ciphertext size reduction and computation speedup are simul-
taneously attainable. We highlight our main contributions as
follows.

« Dynamic Parameter Adjustment: Existing HE applica-
tions generally assume one set of parameters being used
throughout the whole evaluation process. In this work,
by realizing that different neural network architecture
can give rise to significant performance gap, we conduct
rigorous analyses on the error behaviors in the linear
kernel used in Gazelle [12], and propose a set of candidate
parameters to exploit the unused error margin.

« Fast Simulation of Decryption Failures: Previous works
on LWE generally focused on developing theoretical
bounds on the size of the decryption errors, except
for [14] where a Monte-Carlo approach was employed.
While empirical simulation provides a tighter bound as
shown in [14], it is clearly not practical to simulate a
failure probability of 2~4° using brute-force Monte-Carlo.
In this work, we use the sigma-scaled sampling [13] to
further optimize the runtime parameters of DArL.

o Architecture Exploration for Secure Neural Networks:
As a separate contribution, we compare different types of
deep neural network (DNN) architectures to explore the
design trade-off of network architecture in the context of
secure applications. Specifically, we compare the tradi-
tional convolutional neural network implemented in [12]



with BNN. In the experiment, we find that BNN requires
much smaller plaintext modulus, and thereby smaller
parameter sets.

The rest of this paper is organized as follows. First, in
Section II, we discuss the basics of packed additive homo-
morphic encryption (PAHE) and Gazelle. Second, we provide
theoretical error analyses in Section III. Third, we describe
DArL in detail, and discuss the application of fast empirical
methods for even tighter bound analysis Section IV. Fourth, we
propose a set of parameters and conduct experiment on BNN
in Section V. Finally, our work is summarized in Section VI.

II. PRELIMINARIES
A. Error Distributions

In this work, we use x7 to refer to n independent samples
each drawn from x,. We will extensively use the following
two tail bounds provided by Lindner and Peikert [9].

Lemma 1: (Lemma 2.1 in [9]) Let ¢ > 1 and C = c -
exp(%) < 1. Then for any real ¢ > 0 and any integer
n > 1, we have

Pr(|[xz|l = c-ov/n] < C™. ey

Lemma 2: (Lemma 2.2 in [9]) For any real 0 > 0 and
T > 0, and any x € R", we have
Prll|(x,x5)[| = Tolx[] < 2-exp(~T2/2). 2

o

Here, exp(x) = €%, (,) is the inner product operator, and ||x||
is the Euclidean norm of x.

B. The BFV Cryptosystem

The BFV cryptosystem is a standard ring LWE (RLWE)-
based FHE scheme from [1], [3]. The cryptosystem is imple-
mented by Chen et al. in SEAL [17]. Here, we give a short
overview on the basic properties and error behaviors of BFV.

Similar to Gazelle [12], we use [u] to refer to a ciphertext
holding a plaintext vector u, where u € Z; for some plaintext
modulus p and lattice dimension n. In BFV, thanks to the
Smart-Vercaueren packing technique [18], a ciphertext [u] €
Rg is a set of two polynomials in some quotient ring R, for a
ciphertext modulus g. Due to space limitation, we leave out the
details on the encryption and decryption functions in BFV. In
short, for the encryption of a packed polynomial m containing
the elements in u, a BFV ciphertext is structured as a vector
of two polynomials (cg,c1) € ’Rg, where

Co = —a,

01:a~8—|—gm+eo. 3)
p

Here, a is a uniformly sampled polynomial, and s,eqy are
polynomials whose coefficients drawn from x, (i.e., s,eg <
X%, assuming s, e are vectors containing the n coefficients
in s and ey). The decryption follows simply by computing
2(cos + c1) and rounding off the errors.

The scheme remains correct when e < ¢/p, and we can see
that as long as k - e < ¢/p for some constant k € R, scaling
the ciphertext by k& does not affect the correct decryption of the
ciphertext (k-co, k-c1). This applies similarly to homomorphic

TABLE I
EXAMPLE OF PARAMETER INSTANTIATION IN GAZELLE

[ o
|10

n q [lgg [ p T[lgp[o
2048 [ 2%9 — 2763549+ 1 | 60 | 307201 | 18 | 4

addition, where [u]+[v] decrypts correctly under the same key
s when the underlying error polynomials satisfy e, + e, <
q/p-

The parameters instantiated by Gazelle are summarized in
Table I, where lg = denotes log, (). Unfortunately, Gazelle did
not provide any correctness discussion on the instantiated 60-
bit modulus ¢q. However, a more rigorous correctness analysis
can potentially allow us to use smaller ¢ while fixing other
parameters, which in turn gives us stronger security, better
modular reduction efficiency and smaller ciphertexts.

C. Rotating the Plaintext Slots in BFV

A (left) homomorphic rotation rot([u], k) on a ciphertext [u]
permutes the underlying plaintext vector [ug, w1, ,Up—1]
to [Wg, Uk41,° " s Un—1,Ug, "+ ,Uk—1]. The computations on
ciphertext are a simple index swapping followed by a key-
switching procedure. While the index swapping introduces
no additional errors to the ciphertext, we get some additive
error components from switching the ciphertext, such that it
is decryptable under the original secret key s. It is noted that
this additive error, denoted as 7. in [12], is independent from
the original errors contained in the ciphertext [u].

More concretely, as demonstrated in [1], if we ro-
tate a ciphertext [u] to rot([u],k) for some integer £k,
switching rot([u],k) back to some ciphertext [v] =
SwitchKey(rot([u], k), ) using the auxiliary key K results
in the following decrypted equality

Dec([v]) = 2 - (Decomp,([u]) - ex) + Dec([u]), (4

where Decomp,([u]) € RM°&:(@] is the component-wise
decomposition function under base b (i.e., Decomp,(z) =
zo + 21b + 220% + -+ T[10g, (2770198 @)]). Tt is obvious that
if we take b = 2, the term 2 - (Decomp,([u]), ex) is an inner
product between a vector of 0/1 polynomial and a vector of
freshly error polynomial (ex € Rglog? 91 are the errors in IC,
instead of that in [u]). More details on the exact computations
involved in rot can be found in [2], [19], [20].

D. Gazelle: Secure Neural Network Inference

Gazelle [12] represents one of the most recent advances in
the line of prior arts [21], [22] on designing secure inference.
The general protocol and architecture of Gazelle is outlined in
Fig. 1, where Bob wants to classify some input (e.g., image),
and Alice holds the weights. The threat model is that both
Alice and Bob are semi-honest, in the sense that both parties
follow the described protocol, but want to learn as much
information as possible from the other party. Due to space
limitation, we omit a formal discussion on Gazelle and refer
the readers to the original works for more details [12]. Here,
we focus on the error behavior of the linear Conv and FC
layers, which are implemented by the PAHE-based matrix-
vector multiplication techniques.



[u] Bob ‘ [r]
(User) i
GC T GC Input
{ ‘ Flatten
' ] ) U
C C,
He | Co|Rretue || HE |0 | Retua | M| HE
Conv | Pooling | Conv | Pooling | FC
Alice
(Server) w [u] b [r]
1) I f— [r]
| n, g || tnw||=C3 e
——
s n,
n;

Fig. 1. An example of the architecture in Gazelle with two Conv layers, two
non-linear layers and one FC layer. The FC layer, much like the Conv layers,
is internally a homomorphic matrix-vector product.

In both Conv and FC, the main arithmetic procedure is
computing a set of inner products between some plaintext
matrix (or vector) and a ciphertext vector, as shown in
Fig. 1. The basic approach (called naive method in [12])
for computing an inner product is as follows. For some row
vector w in the weight matrix W and ciphertext [u], we
homomorphically compute the coefficient-wise product vector
[v] = [u] @ w, where each v; € v satisfies v; = u; - w; for
u; € u,w; € w. Then, to obtain the sum 2?71%’ we 1)
create a rotated version of [v] by a step size of k = n/2, and
ii) compute a coefficient-wise homomorphic addition between
[v] and rot([v], k). Repeating i) and ii) log,(n) times, each
time decreasing the value of k by half (i.e., k; = n/2¢ for
i € [1,log,y(n)] N Z), we obtain the desired sum in the first
plaintext slot.

The shortcoming of the basic technique is that, for a weight
matrix of dimension n, x n, computing W - [u] results in
n, many ciphertexts, each containing only one result of the
inner product, which blows up the communication bandwidth.
The proposed approach in Gazelle, called the hybrid method
in [12], is to align the weight matrix with the rotating input
ciphertext (instead of the rotating product ciphertext as in the
basic approach). In summary, the hybrid approach computes
W [ [u] as follows.

ne—1
[v] = Z w; Drot([u], i) 3

=0
=wo[ul+---+w,, _1Orot([u],n, — 1), (6)

Ig (n/no) n

= t — 7
=3 () )
where [r] holds the result vector r = Wv € ZI, w;’s

are the diagonally aligned columns of W with dipmension
w; € Zy, and Ig (-) denotes log, (-). In the hybrid approach
shown in Eq. (6), we first rotate [u] n, times, each time
multiplying it with the aligned vectors w; € {wo, -, w,_}.
Each multiplication generates an intermediate ciphertext that
holds only one entry in v; with respect to w;. Summing these
ciphertexts gives us a single ciphertext that contains n/n,

partial sums of the corresponding inner products, and we can
then use the basic approach to rotate this packed result to
obtain the final sum, as in Eq. (7).

III. MODELING THE MATRIX MULTIPLICATION ERROR

In both Conv and FC layers, we are basically dealing
with matrix-vector multiplication of different input and output
dimensions. Therefore, it is important to rigorously study the
error behavior of this operation. It is also noted that since every
linear layer is followed by a non-linear protocol in Gazelle,
the errors do not propagate through layers, i.e., the param-
eters only need to be large enough to endure homomorphic
evaluations within a single linear layer.

A. Formulating the Error

Since a matrix-vector multiplication is merely multiple
vector-vector inner products (with a subtle difference in how
the plaintext elements are aligned), we first take a look at the
error behavior in the hybrid matrix-vector multiplication in the
FC layer. Here, we have a rectangular matrix W & Z™e*"
with the important property that n, < n;, and an input
ciphertext [u] as inputs. Without loss of generality, we assume
that n; = n for the rest of this work.

Homomorphic operations always incur an additive or multi-
plicative error scaling to the ciphertext in Eq. (3). However, the
important observation here is that the original error polynomial
ep has its coefficients sampled from Y, and we have powerful
tail bounds available on the product distribution where one
operand involved comes from X, as in Lemma 2. According
to [12], assuming a fresh [u] is 7p-bounded, the error growth
from this operation is

((7]0 + 7]rot) * Nmult * Mo + T]rot) g (TL/TLO)
= konoNmutt + KoMrot Mmult + K1Mrot (8)

where we set kg = n,1g(n/n,), k1 =1g(n/n,). In Eq. (8),
we assume that a rot induces an additive 7.4 factor, and
multiplying the weight scales the error by ny,1;. We found
no formal discussion on the correctness proof in Gazelle [12],
and a straightforward calculation of Eq. (8) is clearly over-
pessimistic in terms of the error bounds. In what follows, we
develop theoretical bounds for each error term in Eq. (8).

B. The Error ngy - Nmult

Recall that a freshly encrypted ciphertext [u] in BFV is
a linear sum of a - s, 4m encoding u, and ey bounded
by ng. Therefore, a bound on 79 - Nmut 1S essentially a
bound on the polynomial product eq - w. Here e is a simple
polynomial whose coefficients come from the distribution Y,
but the construction of w € R, makes its coefficients obeying
no explicit distributions. In this work, we take a combined
approach. We first assume that the coefficients of w follow a
uniformly random distribution, and asymptotically, the central
limit theorem (CLT) tells us that the underlying distribution
actually does not matter. Furthermore, in Section IV, we
reaffirm our theoretical analyses through empirical approaches.

Assuming w < Uj is uniformly random over the integers
in [-b/2,b/2) N Z, we are interested in the Lo-norm of the



coefficients in e,, = eg - w. Similar to [11], we observe that
the coefficients in e, is in the form

n—1

(epl)i = Z + ((60)2' ' (w)(i—j) mod n) s &)

=0

where we use (z); to depict the i-th coefficient of z in
its coefficient representation. In other words, each new co-
efficient (ep); is the sum of products of coefficients from
ep and w. Since Eq. (9) can also be written as an inner
product between two vectors ey = [(eg)o,- -+ , (€0)n—1] and
w = [(w)o, -, (W)n—1], we can apply Lemma 2 and obtain
a bound on the Ly-norm as

Pr[||{eg, w)|| > To||w||] < 2- exp(—T2/2). (10)

In this work, we use an asymptotic bound of 2740 (2 .
exp(—T?/2) < 2749). This bound translates to a T value
of roughly 7.54, and we use this 7' for all the subsequent
analyses. Since Eq. (10) also requires a bound on the Lso-
norm of the vector w, we can use the Chernoff-Cramer
inequality (e.g., applied in [11]) to set up a series of inde-
pendent and identically distributed random variables X, =
(w)3, -+, Xn—1 = (w)?_,. The inequality states that

n—1-

n—1
Pr lz X; > np+ B <exp (=Bt +nln(My, (1)), (11)

=0

where p is the mean of X;’s, n is the lattice dimension, My,
is the moment generating function of U, and we can optimize
t to find the smallest /3 that satisfies the above equation. Last
but not least, we point out that Eq. (9) only bound the size
of one coefficient in the polynomial e,,. For the L, norm
on the size of the whole polynomial, we can simply perform

a summation in the form |, || = /27 ||(ep,)2]|, which
is basically /n - ||(ep,):||, since all coefficients in e,, are

independent random variables by design.

C. The Error ot - Mmult

The error distribution of 7ot - Mmuie 1S slightly harder to
analyze, due to the fact that we are looking at products
between three terms,

Decomp,([u]) - ex - w, (12)

where Decomp,([u]) and ex (defined in Eq. (4)) are vectors
of dimension [lgq]| over the ring R, and the vector product
is multiplied by w as indicated in Eq. (5).

First, we notice the following equality: (Decomp,([u])-ex)-
w = Decompy([u]) - (ex - w). Second, observe that the bound
on the Lo-norm of the coefficients in ex ,, = ex - w follows
immediately from the previous analysis, where each ex ; € ex
follows exactly the same distribution as e in Eq. (9) with the
same o. Therefore, the task left is to use the Lo-norm bound
on ||lex || = |lex - w|| to derive a bound on the Lo-norm of
the product Decomp,([u]) - ek, Note that this multiplication
is an inner product between vectors of dimension [lg ¢], so we
have a final scaling factor /[lgq]| from the Lo (Euclidean)
summation of [lgq] product polynomials.

Algorithm 1 Per-Layer Adjustment of Parameters

Require: Security parameter A, neural network architecture
A
1: for each linear layer I € A do
2: Fix n, according to !
3: Determine the plaintext modulus p such that it can fit
the maximum value during the evaluation of .
4: for each ¢; € q,n; € n do

5: Estimate the size of evaluation errors, ||e||, using
Eq. (15).

6: if Ig|le|| <lgg—lgp — 1 then

7: Add (p, gj,n;) valid parameter list Params.

8: Output ¢, n = min, ,,(Params)

Focusing on a single polynomial multiplication, the second
step is to think of Decomp,([u]) € Rtglg‘ﬂ as a vector
of uniformly random binary polynomials. In other words,
the coefficients in such polynomials can be seen as drawn
from a Bernoulli distribution with a success probability of
exactly 1/2. The source of the uniformity comes from the
fact that, Decomp,([u]) is a decomposition of the ciphertext
[u]. In the perspective of an eavesdropper, the ciphertext is
(and has to be) indistinguishable from uniformly random.
In addition, we know from [11] that a Bernoulli is 1/2-
subgaussian, which allows us to apply Lemma 2 again. Let
€pai = €K,w,i-Decomp, ;([u]) be the i-th product polynomial,
we have

Pr{|[(epa.i)sl1 > (T/V2)llex,w.
and ||(ep,);1l = v/T1g qTlI(ep,i)s1] as explained.

Finally, for the last term in Eq. (8), we can apply Lemma 2
on the i-th product polynomial e, ; = Decomp, ;([u]) - ex;
as

Pr(l|(eps,i)sll > (T/V2)llexc,ll] < 2 exp(~T7/2),

where ||ex ;|| is bounded by Lemma 1, and we have the
same scaling factor [lgq] due to the inner product. Finally,
to calculate Eq. (8), one can simply compute

] <2-exp(—=T7/2), (13)

(14)

ko(llep, [ + [leps 1) + K lleps - (15)

IV. DYNAMIC PARAMETER ESTIMATION
A. The Overall Procedure

Our dynamic parameter estimation technique can be sum-
marized by the procedures outlined in Alg. 1. Note that this is
mainly an offline procedure that involves only the server (here,
offline means that the optimization does not depend on user
input). First, by looking at the network architecture, we set our
choices on n,, and p. Note that while p can depend on the user
inputs, the server already knows what type of workloads (i.e.,
an image represented by 8-bit integers) are expected, and can
set p accordingly. Next, we enter a loop where we estimate
the error growths from secure inference under the instantiation
of the parameters (p,q;,n;,n,). Here, ¢; € q and n; € n
are pre-computed candidates of the ciphertext modulus ¢ and
lattice dimension 7 in the lists q and n (in practice, while ¢ can



vary, n is generally either 1024 or 2048). The ¢’s and n’s can
be generated according to the parameter selection procedures
described in [12]. Subsequently, if the calculated error ensures
a correct decryption up to some probabilities derived in the
corresponding bounds, we accept the parameter set. Finally,
we select the smallest ¢ and n as the parameters for concrete
instantiation.

As mentioned, the size of the parameters depends critically
on p and the failure probability estimation. We delay our
concrete instantiations and analyses to Section V, and first
discuss how to apply fast Monte-Carlo methods to further
improve the correctness analysis, when the weight matrices
in A are known.

B. Failure Probability via Sigma-Scaled Sampling

As suggested in [14], theoretical bounds on the decryption
failure probability of LWE-based cryptosystems tend to be
loose. However, simulating such probability can be practically
challenging, as simulating a failure probability of 2749 re-
quires roughly 28 brute-force Monte-Carlo runs.

Fortunately, what we can see is that simulating the LWE
decryption failure probability shares many similarities with
simulating circuit failure probability in the field of design
automation. In particular, the sigma-scaled sampling (SSS)
method [13] is known to be efficient at handling high-
dimensional Gaussian random variables. In short, we want to
calculate some rare failure probability Py < 2740 which is
the probability of the decryption error ||e|| being greater than
some threshold ;. If we abstract the homomorphic evaluation
as some function f on the initial error vector e as f(e), Py
can be calculated as

“+o0
P = / I(e)f(e)de,

— 00

(16)

where I(e) = 1 if and only if |le]| > n:, and I(e) = 0
otherwise. Apparently, Py is hard to simulate directly, and the
SSS relies on the simple idea of sampling from a different
density function g, where g is exactly like f but scales the
sigma of e by some constant s. We then estimate the failure
probability of P, instead of P;. Since P, gives is a much
larger probability (g(e) is much more likely to fail compared
to f(e)), we can use brute-force Monte-Carlo to obtain an
accurate version of P,. Converting P, back to P involves
multiple runs of P, using different scaling factors and model
fittings. A more detailed presentation can be found in [13].

V. NUMERICAL EXPERIMENTS AND PARAMETER
INSTANTIATIONS

In order to quantitatively assess the impact of DArL, we
conduct numerical experiments on the matrix-vector product
for two sets of plaintext weight filters of different dimensions:
1 x 2048 and 16 x 1024. Both dimensions are taken directly
from Gazelle [12] with the decomposition parameter b = 210,

A. Concrete Analysis on the Theoretical Bounds

We demonstrate an example derivation of error bounds
using parameters provided in Gazelle outlined in Table I. We
first note that, by having an 18-bit plaintext modulus and a

TABLE II
PROPOSED SELECTION OF CANDIDATE PARAMETER SETS
p Mg p] q Mg q] b Security
12289 14 137438822401 37 D >214-bit
12289 14 36028797018910721 55 P > 157-bit
65537 16 2199023251457 41 P >189-bit
65537 16 144115188075835393 57 P > 128-bit
307201 18 250 _ 21763549 + 1 60 210 1 > 121-bit

b = 210, we need to transmit two copies of the same ciphertext
([2'°u], [u]) to conduct a decomposed multiplication, which
doubles the amount of communications and computations
needed (when p is 22-bit as suggested in Gazelle, it triples
resources needed). Before delving into the analysis, we note
that when n, = 1, we do not need any rotation, and the error
margin increases significantly as a result of this fact.

In the case where n, = 8 (we pack two rows into one
ciphertext, since n; = 1024 and n = 2048) , we first use
Eq. (11) to calculate the norm ||w|| < 55143, where w; € w is
drawn from a uniform distribution in the range [—512,512)NZ
(since b = 210). Then, Eq. (9) gives us a bound on e as 7.54-4-
55143 < 1663113. Applying the same procedure on ||ex . ||
infers that ||ex || < 1663113 - /2048 < 75263903, and
hence ||e,, || = V60 - 7.54 - 1/4/2 - 75263903 < 3108269803.
Meanwhile, taking ¢ = 1.12 in Lemma. 1 gives us a 2740
bound on the norm of ex; as |lex ;|| < 203, and ||ep,|| =
V60 - 7.54/+/2 - 203 < 8383. Finally, summing all norms, we
get that the total error accumulated in one evaluation of the
ciphertext [u] is less than 3108269803k, + 8383k, which is
roughly 42 bits.

On the other hand, if n, = 1, the total error contains eg
only, and we know that the error is bounded by 1663113 in
this case, the error is only around 20-bit. Combined with an
18-bit (or even 22-bit) plaintext modulus, we require at most a
42-bit q. Compared to the 60-bit ¢ required when n, = 8, by
dynamically adjusting the per-layer parameters, we can reduce
the ciphertext size in a 1 x 2048 layer by as much as 67%.
Moreover, if application-specific hardware is adopted, we can
also improve the computational efficiency by customizing to a
38-bit modulus, instead of using a fixed 64-bit machine word.

Last but not least, note that the proposed technique reveals
no more information than Gazelle already does. Namely, Bob
as the client already knew the filter dimension and the integer
b, and these are all the server needs to know to adjust the
per-layer parameters accordingly.

B. A Different Plaintext Space

Using the previously demonstrated error bounds, we follow
the steps in Alg. 1 to generate a set of plausible parameters
with respect to different plaintext modulus up to the 18-
bit p suggested in [12], and the results are summarized in
Table IT with the security levels estimated using the framework
provided by [10].

Obviously, the size of the plaintext space has a strong impact
on the parameter sets. First of all, for both 14-bit and 16-bit
plaintext spaces, we do not need to decompose the weight
matrix to prevent noise overflow. This immediately gives us
at least 2x (compared to 18-bit p) and even 3x (22-bit p)



0.175

0.150

0.125

0.100

Density

0.075

0.050 1

0.025

0.000

—75.0 —=72.5 —70.0 —67.5 —65.0 —62.5 —60.0 —57.5
loga(P7S)

Fig. 2. The distribution of 240 runs of Py simulation using SSS.

TABLE III
COMPARISON OF COMMUNICATIONAL AND COMPUTATIONAL EFFICIENCY
BETWEEN DIFFERENT PARAMETER INSTANTIATIONS

Method g p] [Ig q] | Ciphertext Size | Fail. Prob.
DArL Empirical 14 54 ~ 29.2KB 2-60
DArL Theroetical 14 55 ~ 29.2KB 2~ 10

Gazelle 18 60 ~ 65.5KB 2~ 10

Gazelle 22 60 ~ 98.4KB > 210

ciphertext size reduction. Moreover, due to the fact that we
are essentially having less ciphertexts to rotate and add, we
speed up all of the homomorphic computations by 2x-3x as
well. By fixing n = 2048 to allow for efficient packing, a
smaller q drastically increases the security of the HE scheme.

C. Monte-Carlo on BNN-based Secure Inference

We applied the SSS technique on a 10 x 1024-dimensional
packed binary weights pre-trained using the MNIST [15]
dataset with a plaintext modulus of p = 12289. We set 7, to
be slightly less than 40-bit, and step ¢ in the error distribution
X from 3 -0 to 5- o with a step size of 0.1. 50K simulations
are run in each o step, which totals to 1 M simulation runs per
calculation of Pr. On an Intel Xeon E5-2630 processor with
32GB of memory, one Py run roughly takes 2425 seconds.
Hence, the computational cost of fast Monte-Carlo is still quite
heavy, and it will be up to the server if further optimizations
are needed for the particular filter.

Fig. 2 shows the repeated calculation of 240 Py estimations
using SSS. As noted in [13], the derived P; tends to follow a
normal distribution on the logarithmic scale, and the calculated
upper bound is P}J P < 276089 on the 95% confidence interval.
We summarize the best-case performance difference between
DArL and Gazelle in Table III. In addition, since the Monte-
Carlo simulation indicates that the instantiated parameters
are not entirely tight, we can further improve the efficiency
of homomorphic evaluations and decryptions by approximate
computing techniques, as suggested in [14].

VI. CONCLUSION

In this work, DArL is proposed to dynamically optimize the
parameter instantiations used in BFV-based secure inference.
In DArL, we establish theoretical approach to systematically
characterize the error growth in different network settings, and
developed a Monte-Carlo-based sampling method to tighten

the bound on decryption failures. In the experiment, we
observe a maximum of 3.3x ciphertext reduction, and 2x-3x
computation speedup.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant No. 17H01713, 17J06952, 18H03214, and Grant-in-aid
for JSPS Fellow (DC1).

REFERENCES

[1]1 Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” ACM Trans. Computation
Theory, vol. 6, no. 3, p. 13, 2014.

[2] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical GapSVP,” in Proc. CRYPTO, 2012, pp. 868-886.

[3] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

[4] L. Ducas, V. Lyubashevsky, and T. Prest, “Efficient identity-based
encryption over NTRU lattices,” in Proc. ASIACRYPT, 2014, pp. 22—
41.

[5] S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Attribute-based encryp-
tion for circuits,” JACM, vol. 62, no. 6, p. 45, 2015.

[6] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption
for all circuits,” SIAM J. Computing, vol. 45, no. 3, pp. 882-929, 2016.

[7] L. Damgard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computa-
tion from somewhat homomorphic encryption,” in Proc. CRYPTO, 2012,
pp. 643-662.

[8] P. Mukherjee and D. Wichs, “Two round multiparty computation via
multi-key FHE,” in Proc. EUROCRYPT, 2016, pp. 735-763.

[9] R.Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based
encryption,” in Proc. RSA Conf., 2011, pp. 319-339.

[10] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
learning with errors,” J. Mathematical Cryptology, vol. 9, no. 3, pp.
169-203, 2015.

[11] E. Alkim, L. Ducas, T. Poppelmann, and P. Schwabe, “Post-quantum
key exchange — a new hope,” in USENIX Security Symposium, 2016,
pp. 327-343.

[12] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low
latency framework for secure neural network inference,” CoRR, vol.
abs/1801.05507, 2018.

[13] S. Sun, X. Li, H. Liu, K. Luo, and B. Gu, “Fast statistical analysis of rare
circuit failure events via scaled-sigma sampling for high-dimensional
variation space,” IEEE TCAD, vol. 34, no. 7, pp. 1096-1109, 2015.

[14] S. Bian, M. Hiromoto, and T. Sato, “DWE: Decrypting learning with
errors with errors,” in Proc. DAC. 1EEE, 2018, pp. 1-6.

[15] “The MNIST database of handwritten digits,” http://yann.lecun.com/
exdb/mnist, 2010.

[16] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Proc.
NIPS, 2015, pp. 3123-3131.

[17] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library
— SEAL v2.1,” in Proc. Int’l Conf. Financial Cryptography and Data
Security, 2017, pp. 3-18.

[18] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with
relatively small key and ciphertext sizes,” in Proc. Int’l Workshop on
Public Key Cryptography, 2010, pp. 420-443.

[19] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption
with polylog overhead,” in Proc. EUROCRYPT, 2012, pp. 465-482.

[20] S. Halevi and V. Shoup, “Faster homomorphic linear transformations in
helib,” Cryptology ePrint Archive, Report 2018/244, Tech. Rep., 2018.

[21] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. Symp. Security and Privacy,
2017, pp. 19-38.

[22] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proc. Conf. Computer and
Communications Security, 2017, pp. 619-631.



