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ABSTRACT

The Learning with Errors (LWE) problem is a novel foundation of a
variety of cryptographic applications, including quantumly-secure
public-key encryption, digital signature, and fully homomorphic
encryption. In this work, we propose an approximate decryption
technique for LWE-based cryptosystems. Based on the fact that the
decryption process for such systems is inherently approximate, we
apply hardware-based approximate computing techniques. Rigor-
ous experiments have shown that the proposed technique simul-
taneously achieved 1.3x (resp., 2.5x) speed increase, 2.06x (resp.,
7.89x) area reduction, 20.5% (resp., 4x) of power reduction, and an
average of 27.1% (resp., 65.6%) ciphertext size reduction for public-
key encryption scheme (resp., a state-of-the-art fully homomor-
phic encryption scheme).

ACM Reference Format:

Song Bian, Masayuki Hiromoto, and Takashi Sato. 2018. DWE: Decrypting
Learning with Errors with Errors . In DAC ’18: DAC ’18: The 55th Annual De-
sign Automation Conference 2018, June 24-29, 2018, San Francisco, CA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3195970.3196032

1 INTRODUCTION

The hardness of the Learning with Errors (LWE) problem was first
proved by Regev [19], and has since become the foundation for a
plethora of cryptographic primitives as well as constructions. Ex-
amples include several generations of fully homomorphic encryp-
tion (FHE) schemes [3, 5, 9, 10, 14], public key encryption (PKE)
schemes [15, 19], key-exchange protocols [2, 6], digital signature
schemes [9, 17], and many more.

While theoretical advances for LWE flourish, its concrete pa-
rameter instantiations, and thereby hardware instantiations, are
somewhat limited. Most existing hardware instantiations [11, 16,
20] are designed for ring LWE (RLWE). RLWE operates in a sub-
set of standard lattices called ideal lattices [18], which allows for
asymptotically efficient matrix multiplication through the number
theoretic transformation (NTT). Nevertheless, as recent literatures
point out [2, 13], it is not known if working in the ideal lattices is
identical in a standard lattices, and it may introduce additional se-
curity assumptions. As a result, Howe et al. recently proposed a
hardware instantiation on FPGA [13] implementing the Lindner

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06....$15.00
https://doi.org/10.1145/3195970.3196032

and Peikert (LP) cryptosystem [15]. This is the only hardware im-
plementation we can find that is of a standard-lattice-based cryp-
tosystem, and the implementation result shows that cryptosystems
in standard lattices can be as efficient as those in ideal lattices [13].
Unfortunately, the above mentioned hardware instantiations, in
both LWE and RLWE, are generally only on the early stage of de-
sign explorations, where the hardware serves solely as a tool to
realize a set of established algorithms.

Different from existing approaches, we attempt to make a con-
nection between LWE, a concept in cryptology, and approximate
computing (AC), a field of study in hardware design. The important
observation here is that LWE-based cryptosystems are inherently
approximate, and that the decryption for LWE is probabilistic by
design. If such is the case, as long as the parameters permit, the
probabilistic nature of LWE allows approximate hardware to be
deployed virtually with no additional overhead.

In this work, we propose decrypting with errors (DWE, also
known as Yumeko), a methodology that converts existing “exact”
(as said, the scheme is approximate by nature) LWE/RLWE schemes
into approximate ones where hardware-generated noise can be in-
fused into the schemes without breaking the correctness require-
ments. We focus on two well-known LWE-based cryptosystems:
i) the PKE scheme by LP [15], and ii) the third-generation FHE
by Gentry et al. [10], whose parameter instantiation is provided
in [14]. We utilize the state-of-art DRUM multiplier [12] to approx-
imate the multiplication involved in the decryption logic. Through
theoretical verification and empirical experiments, we show that

by introducing AC to LWE decryption, we can simultaneously achieve

1.3x (resp., 2.5x) speed increase, 2.06x (resp., 7.89x) area reduc-
tion, 20.5% (resp., 4x) power reduction and an average of 27.1%
(resp., 65.6%) ciphertext size reduction for the public-key encryp-
tion scheme by LP [15] (resp., the state-of-the-art fully homomor-
phic encryption scheme by [10, 14]), at very small to no cost (except
for slightly increased decryption error probability, which still sat-
isfies the original error bound). The main results and contributions
of this work are summarized as follows.

e AC for LWE/RLWE: Theoretically, we provide a general
“transformation” that alters existing LWE/RLWE schemes
such that approxiamte hardware can be utilized in the de-
cryption function. As later shown in Section 4, we can add
additional noise to LP without violating its security and cor-
rectness requirement. This translates to the result that the
speed, area, power, and ciphertext-size gain from our tech-

nique comes at almost zero cost. Moreover, since all LWE/RLWE-

based cryptosystems require probabilistic decryption func-
tions where inner products between two vectors (or poly-
nomials, as in RLWE) are taken, our technique applies to
almost all such systems. To the best of our knowledge, we
are the first to adopt AC in LWE-based cryptosystems.
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e Theoretical/Empirical Derivation for Provable Correct-
ness: One of the notable contributions of our theoretical
framework is its provable correctness with tight bounds. In
order to characterize the hardware-generated errors during
approximate decryption, we provide both theoretical and
empirical derivations that verify the correctness of the trans-
formed cryptosystem under specific failure probability re-
quirement.

e Application-Specific Integrated Circuit (ASIC) Multi-
plier for Standard LWE: As a separate contribution, we
optimized the DRUM-based ASIC multiplier for standard
LWE applications. We found very little existing works in the
field of standard lattice except for Howe et al. [13], and the
hardware multiplier used in [13] is a standard 18-bit mul-
tiplier on an FPGA, which is obviously suboptimal for 12-
bit multiplication with small secrets. By designing an ASIC
multiplier for LWE decryption, we show that a further 1.325x
speed improvement, 2x area reduction and 1.84x power re-
duction can be achieved.

The rest of this paper will be organized as follows. First, in Sec-
tion 2, we provide preliminaries on existing cryptographic con-
structs, and the DRUM multiplier. Second, we show how to convert
such existing construct to an approximate one in Section 3, and dis-
cuss the concrete parameter instantiation in Section 4. Third, we
provide the hardware architecture and results implementing the
proposed algorithms in Section 5. Finally, we conclude our paper
in Section 6.

2 PRELIMINARIES

2.1 Error Distributions

All LWE cryptosystems depend on some error distributions that
satisfies specific security requirements. Due to the original proof
of hardness by Regev, a discrete Gaussian distribution is gener-
ally chosen, denoted as y, where o is the standard deviation. In
this work, we follow the notation in [8, 13], where o is the stan-
dard deviation, instead of the s parameter used in the original work

in [15] (note o = —2=). We also use yZ to refer to n independent

Va2r

samples each drawn from y,. We will focus on the following two
tail bounds provided in the original work.

LEMMA 2.1. (Lemma2.1in[15]) Letc > 1 andC = c-exp(%) <

1. Then for any real ¢ > 0 and any integer n > 1, we have

Prlll 2l = ¢ - o] < C™. (1)

LEMMA 2.2. (Lemma 2.2 in [15]) For any realo > 0 and T > 0,
and any x € R, we have

2
Pr(l[(x, x)ll > Tollx|l] < 2- eXP(—T?) : 2

Here, exp(x) = €%, and ||x]| is the Euclidean norm of x.

While a perfect discrete Gaussian is important for the security of
LWE instances, some special assumptions can loosen this require-
ment. For instance, the standard deviation of the error distribution
can be extremely small as in [2] or even non-Gaussian as in [1].
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2.2 The LP Cryptosystem

Here we give a review on the LP cryptosystem [15] in detail. Since
the decryption function in [10] is almost identical to the one in LP,
it is left out in this work.

We provide a simplified version of LP with only one bit encryp-
tion, instead of ¢ bits as in [13, 15]. All additions and multiplica-
tions operate in the residual class of g, i.e., Zg.

LP.Setup(A): Given the security parameter A, output a set of pa-
rameters (n, o, q), where n is the lattice dimension, o is the stan-
dard deviation for the discrete Gaussian distribution y, and q is
some modulus.

LP.KeyGen(n, 0, q): Sample a uniform matrix A « Zg*", and
two secret vectors ri,ry <« )(3“. Let p = r; — A rp. Output the
public key A, p, and secret key rz.

LP.Enc(A, p,m € {0,1}): For a 1-bit plaintext message m, draw
three errors e, ez «— )(QXI, e3 € yo. Output two ciphertext ¢y, ¢z

where
cr=elA+el e Z}IX" (3)
02=e§p+e3+m~ Lg/2] € Zq4. (4)
LP.Dec(c, ¢z, r2): Compute
m = [(cirz2 +c2)/12/q]1. (5)

Here, p’ is the transpose of p. | -] and | -] depict the flooring and
rounding functions, respectively.

It is easily observed that in the decryption function, the inner
product {ci, r2) is the most computationally intensive step, and is
thus the target of our work.

2.2.1 Correctness of LP. Observe that cirz + ¢ in Eq. (5) trans-
lates to

(e]A+ej)rz +eir1 —efArz +e3 +m- [g/2]
=e£r2+e{r1 +es3+m-|q/2]. 6)

It is noticed that so long as |e§rg + eirl + e3| (denoted as |e|) is
less than |q/4], —1q/4] < m- |q/2] +e < |q/4] if m = 0, and
otherwise if m = 1. Since e3 is small compared to the products,
and the products are obtained from independently drawn Gaussian

samples, we can write |e| = |(e, r)| where e, r « y2".
Lg/4]

ollell”

Lemma 2.2 can be used to bound (e, r). Let T =
see that

allell

2
Prll(e,)] > Lg/4] < z-exp(-g () ) o

20 |lell
fined as the per-symbol error probability, and is set to be 0.01.

This means that for every bit-decryption in the scheme, there is
a 2% chance that such decryption will fail. The probability is low
enough that simple error correction codes can be added to assure
successful plaintext recovery, as suggested in the original work [15].

It is noted that this idea of approximate decryption is generally
found in LWE-based cryptosystems, where a simple dot product
between the ciphertext and the secret key is used to recover the
plaintext message with some degree of failing probability. Hence,
the above mentioned error bound and per-symbol failure probabil-
ity become the main motivation for this work. As later discussed

where ||e|| is bounded by Lemma 2.1. In [15], exp(—m) is de-
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lgq bits
approximate
a) [o]fof1] x[x [ ]x]
H_/
k-1 bits Unbiasing
b [o]fol1] [1]o [ ]o]
k bits

Figure 1: The approximate process for one operand used in
DRUM [12] where a) is before approximation, and b) is after
approximation.

Algorithm 1 Encoding transformation function fg

Require: x € Zg
1: p = LOD(x)
2 xg=x-2") > (p-k)
3: return p € Zyg 41, Xa € Zgk-2

in Section 3, we can introduce errors for each multiplication in the
dot product, and so far as the bound in Eq. (7) holds, the scheme
remains correct.

2.3 DRUM

The DRUM multiplier [12] approximates its input operand using
the method shown in Fig. 1. First, in a), for a lg g-bit number (i.e.,
log, g) the approximation algorithm finds the position of the lead-
ing one. The algorithm then copies the following k — 1 bits along
with an unbiasing bit of 1, forming a total of k bits, into the ap-
proximated result in b). The remaining bits are ignored, and ap-
proximated deterministically using 0’s.

When the incoming operand follows a perfect uniform distribu-
tion in Zg, which is exactly the security requirement of all LWE-
based cryptosystems, DRUM gives an unbiased error that roughly
follows a Gaussian distribution.

In addition to its error property, it is obvious that after the ap-
proximation, only k — 2 bits are indeterministic. Hence, for an ap-
proximate decryption engine, we only need k —2 bits of data, along
with the position of the leading zero, to successfully compute an
approximated version of the original product. We provide an en-
coding method in Section 4.2 such that on average, at most k bits
are needed for a successful approximate decryption.

3 CRYPTOSYSTEM TRANSFORMATION

To concretely analyze the impact of approximate decryption on
LWE-based cryptosystems, we actually need to slightly change the
algorithmic construct of existing cryptosystems. In this work, we
take LP as an example. However, as emphasized, our technique
applies generally to LWE instances.

3.1 Formalizing DRUM

Before presenting the modified cryptosystem, we need to extend
the DRUM algorithm into a two-party setting. Here, we define a

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

Algorithm 2 Decoding transformation function fp

Require: p € Zig 41, Xa € Zyk—2
ty=((xg <1)+1) < (p-k—1))+2PH
2 returny € Zg

pair function (fg, fp) that transform a [lg g]-bit number x into an
approximate one y, based on the DRUM technique. The details of
the functions are outlined in Alg. 1 and 2. In Alg. 1, we use the
function LOD for leading one detection. The position of the lead-
ing one p, an integer in the range [0, [lg g] — 1], and the truncated
number xq € Zyk- is the output. We truncated the input x into the
absolute minimum of k — 2 bits, where all the deterministic com-
ponents are discarded (including the leading one by subtracting 27
in fg and adding it back in fp). Next, in Alg. 2, an approximation
of x, namely y € Zg, is recovered using p and x,.

Since all operations in Alg. 1 and 2 are merely describing the
DRUM multiplier, the computations translate equivalently to the
hardware components in DRUM. We also define (fg, fp) on vec-
tors, where fg(x) and fp(x, 7r) are component-wise application of
the respective functions on each element x; € x, and the corre-
sponding leading one position vector, &t = [po,- -+ , pn—1] € Z'ﬁ)g(lq].

3.2 Proposed Modification on LP

At this stage, the modification on LP becomes simple to explain.
We use identical LP.Setup and LP.KeyGen. For Enc and Dec, we
add the transformation functions to the scheme.

e ModLP.Enc(A, p, m): We use the same errors ey, e, e3, and
output the ciphertext,

T, cp = fe(elA+el) (8)
cz:e§p+e3+m~ Llg/2] € Z4. 9)

e ModLP.Dec(r, cf,ca, r2):
m = [(fp(ep, ) - 12 + ¢2)/12/q]1. (10)

3.2.1 Correctness. The first observation we make is that fp does
not need to be applied to both operands involved in the inner prod-
uct {cs, r2). This is due to the fact that we used a small-secret LWE
instance. For the instantiated parameters later discussed in Sec-
tion 4, one of the operands to the DRUM multiplier, r; € ry is
always accurate, for r; follows a Gaussian distribution with small
o (o = 3.33). The probability that r; > 2 is negligible 2k =512
in our instantiation. This means that for r; > 2k, r; needs to reach
> 1000, which is practically impossible). Thus, only one operand
will be approximated by the (fg, fp) function pair.

To further analyze the decryption error in the modified LP (ModLP)
scheme, notice that for any number x € Zg, the corresponding y =
Jo(fe(x)) = x+ey, for some error es induced by the DRUM approx-
imation. In other words, we can think of the DRUM approximation
as introducing some additive error to the original ciphertext, which
happens to allow us to ignore some of its bits. Consequently, we
can see that fp(cf, 7r) = fD(fE(eiA-k eg)) = (eiA+ eg) +el, where
eachentry of e € ZZXI is added to the corresponding entry in the

original ciphertext e{A + eg. Alternatively, this can be written as

folep,m) =c1+ e}. Using the same decryption equation in Eq. (6)
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Table 1: Parameter Instantiation for ModLP and ModFHE

q n o Igg | k
ModLP 4096 256 3.33 12

ModFHE | 2%° | 1024 | 398 | 33 | 11

©

while replacing ¢ with fp(cs, ), we can see that the decryption
result becomes

(elA+el+ e})rz telry —elAry +e3s + m- /2]
=(e2+ef)trg+eir1 +es+m-|q/2]. (11)

The important note here is that, if we can somewhat assume that
the element of e; comes from a discrete Gaussian distribution (which
is close, but not exactly the case), we can see that ey + ef is merely
the sum of two Gaussian variables with o and oy, assuming the
standard deviation for the presumed Gaussian distribution of ef
is of. We can then calculate the combined standard deviation by

os = Jo% + 0';, and use Lemma 2.1 to bound e; + ef, where

llez +efll < c-osvVn (12)

by overwhelming probability (concretely, ~ 2740 in LP).
Ideally, when n — oo, the above bound holds by the central limit

theorem, and we can define a vector € = (ep + ef)l ler € ZEI”XI, and

r = ra|r; € 2! (Here, || means vertical vector concatenation),

where the per-symbol decryption failure probability is bounded
using Lemma 2.2 as

2 \olel

_ 2
Pr[l(s,r>|>Lq/4J]<2-exp( ! (Lq/‘”)). (13)

In practice, since n is relatively large in almost all LWE-based cryp-
tosystems, Eq. (13) approximates the upper bound on the decryp-
tion failure probability quite well. A more precise bound is derived
from Monte-Carlo simulation in Section 4.

3.2.2  Security. The security of ModLP follows immediately from
LP. We omit a formal proof due to space limitation, but as sug-
gested, fg and fp compress the ciphertext ¢; with loss. Thus, if an
adversary is able to recover the secret or plaintext from (s, c2), the
adversary will be able to do the same thing for (cy, cz), with less ef-
fort. Thus, ModLP has at least the same, and presumably stronger
security compared to LP (due to additional error).

3.3 Transformation of FHE

Due to the limit of space, we do not describe a detailed version
of ModFHE, the transformed version of the FHE scheme by [10].
However, it is not hard to see that the same procedure can be fol-
lowed where fg and fp are applied during encryption and decryp-
tion. We will provide parameter instantiation for ModFHE in Sec-
tion 4.

4 PARAMETER INSTANTIATION

In this section, we instantiate the ModLP and ModFHE schemes
using concrete parameters suggested in [15] and [14], respectively,
along with the corresponding DRUM instances with parameters
(Ig g, k). In this section, since q is a power of 2, we drop the ceiling
and flooring functions around ¢/4 and lg q.
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Figure 2: The decryption error distributions of LP and
ModLP from 10M simulations.

The parameters used in this work is summarized in Table 1. As
suggested in [4, 13], the modulus in standard lattice can be simpli-
fied to be a power of 2, which basically squashes the circuitry for
modulo reductions. In ModLP, we use the same n and ¢ in [13, 15]
that guarantee a security level roughly equivalent to AES-128. On
the other hand, ModFHE has a security level of 80-bit as discussed
in [14]. For the DRUM multiplier in ModLP (resp., ModFHE), we
instantiate a 9-bit (resp., 11-bit) multiplier instead of a full 12-bit
(resp., 32-bit) one, and study the error produced by such approxi-
mation.

4.1 Empirical Bound for Approximation Errors
in ModLP

The Monte-Carlo simulation approach for the error bound is easy
to perceive. We produce 10 million LP ciphertexts that are all en-
cryptions of 0’s, and studied the size of the error after decryption
using the proposed ModLP and the original LP scheme. Here, de-
cryption error for ModLP is essentially Eq. (13), and Eq. (7) for LP.
The simulated error distributions for ModLP (grey area) and LP
(red area) are shown in Fig. 2. A normal fitting is plotted on top of
each histogram, and in both cases, the histograms follow the fit-
ted normal almost indistinguishably well (the fitted standard de-
viation is denoted as o, here). According to the simulated results,
for LP, there are 597 samples crossing |q/4| in 10M simulations
(0.00597%, with o, = 252), and 12429 samples (0.12429%, o, = 314)
for ModLP. We can also calculate the error probability from oy of
the fitted normal. For o, = 252, 1024 is 4.060, corresponding to
a probability of 2 - 0.006% (2 for errors in positive and negative
directions), which agrees with the Monte-Carlo simulation. Mean-
while, for a o, = 314, 1024 is roughly 3.2610,, giving a probability
of 0.2%.

In both cases, for 10M simulations, the decryption failure proba-
bility seems to satisfy the requirement (2% as in Section 2.2.1). Fur-
thermore, the tail probability seems to decrease much faster than
a normal fitting in both cases. Monte-Carlo simulation is stochas-
tic by design, which means that the number cannot be taken as is.
Fortunately, we can study the confidence interval for a particular
set of simulations.
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Figure 3: The upper bound U for different approximation
parameter lgq — k.

To concretely analyze the confidence internal, we need setup
an additional random variable Y, where Y is the number of times
lem| > q/4 in one set of 1000 simulations. This can also be thought
of as the number of decryption failures per 1000 trials. Next, we can
see that the the 10 million simulations in the previous section can
be seen as 10000 independent simulations of Y. According to [7],
for a simulated mean of j, some parameter z. > 0, simulated stan-
dard deviation Sy, and total number of simulations N, the upper
bound on the mean of Y can be described as (we ignore the lower
bound since it is irrelevant)

Sy
N~
We can obtain y and Sy from Fig. 2, and N = 10000 as mentioned.
The z. parameter basically describes how much confidence we
hold in this interval. We set z. = 7, which gives a confidence level
of 1 — 2 x 10712, In other words, Pr[Y > U] < 2 x 10712 (roughly
around 2738).

The result of U is shown in Fig. 3. The x-axis of the figure de-
notes lg g — k, which roughly is the number of bits ignored in the
DRUM multiplication (DRUM has dynamic range, so this is not al-
ways the case). When lg q — k = 0, this is basically the original LP
scheme where an exact multiplier is used. The important observa-
tion here is that, when the approximate error ey is much smaller
than the added Gaussian error ey, the rate for which the total er-
ror increases is slow. This fact can be explained by our theoretical

U=7y+z (14)

insights in Section 3.2.1, where the final 65 = (o2 + O'JE is additive

with a square root. Hence, the LP error (o, = 252 forlgq — k = 0)
first dominates the total error, until Ig g —k = 3, where o, has only
increased to 314. Nonetheless, when lg ¢ — k = 4, the approxima-
tion error becomes dominant, and we see a significant increase in
on =451 and U = 23.85 per 1000 decryptions.

Through the empirical study, what we found is that the LP pa-
rameter choice is rather conservative, with U = 0.0767 per 1000
decryptions (translates to a failure probability of 0.00767%, which
is much less than 2%). Even with 1g g—k = 4, we are barely crossing
the bar (~ 2.4% at z, = 7), and lg g — k = 3 (= 0.131%) satisfies the
per symbol error probability of 2% with overwhelming confidence.
Hence, we choose these parameters for the hardware implementa-
tion.
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4.2 Ciphertext Size Reduction

As mentioned, since we use fg to encode every element in ¢, we
only need to transform p and ¢ € ¢y = fg(c1) when cipher-
texts are transmitted. Note that ¢y needs to be transmitted as is,
but it is only one number in Z4, where the majority (n = 256)
of numbers are compressed. While we know that every c, is a
(k — 2)-bit number, since DRUM is dynamically ranged, we also
need to transmit p, which reduces the amount of ciphertext reduc-
tion. Nevertheless, since all ¢ € ¢; is uniformly sampled from Z,
we know the exact probability mass function of each discrete p
value. Hence, a simple Huffman coding can achieve optimal com-
pression rate. For g ¢ = 12, we know that Pr[p = 1gq — 1] = 1/2,
Pr[p =1gq — 2] = 1/4, and so on. After simple calculation, we can
see that, on average, the total number of bits need to be transmitted
for one fg(c) is k — 2 + p, where

p=1x1/2+2%x1/4+3%x1/8+3x%x1/8=1.75, (15)
giving us a ciphertext reduction of roughly 1 — ((7 + 1.75)/12) =
27.1%.

4.3 Note on ModFHE

Using a similar technique, we can instantiate parameters for ModFHE.

The only difficulty here is that, after a certain rounds of homo-
morphic encryption, the error distribution in the ciphertext is not
as easy as that in LP. Thus, we make the absolute worst-case as-
sumption, where all the errors is on its bound, which is g/4, for
g = 2% as instantiated in [14]. Under such assumption, we need
to increase the modulus g by a factor of 2, such that as long as the
approximate errors are also less than g/4, their sum will be less
than 2 X q/4. The ciphertext reduction in this case is 9 + p, where
p = lz.il(i x (1/2%) + 22 x (1/2%?). Since p < 2, the ciphertext
reduction in this case is 1 — ((9 + 2)/32) = 65.6%.

4.4 Applicability to RLWE

Up to this point, the (f, fp) transformations and all of our error
analysis are applicable to RLWE instances. The only problem is
that with the same (fg, fp) that is designed from the DRUM multi-
plier, it is not clear how the NTT engine can be optimized to benefit
from these approximations (which is an interesting open problem).
Thus, while RLWE cryptosystems may not possess the hardware
gain from using an approximate multiplier, it is possible to use the
same analysis to reduce the ciphertext size of RLWE-based sys-
tems.

5 HARDWARE IMPLEMENTATION

5.1 Hardware Architecture

As described, the operations involved in the decryption of stan-
dard LWE with a modulus g of a power of 2 involves only an in-
ner product between two n-dimensional vectors, and some inte-
ger additions. Hence, the main challenge is the implementation
of the multiplier, with a small amount of control and adder log-
ics. Thus, in this work, we implement and compare three types of
hardware multipliers: i) a plain 12-bit multiplier as used in exist-
ing works [13], ii) an approximated 12-bit multiplier to examine
the impact of AC, and iii) an LWE-specific multiplier considering
modulo reduction and small secret.
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Figure 4: The proposed architecture for approximate multi-
plier used in small-secret LWE decryption.

Table 2: Results of Hardware Implementations

Delay (ns) | Area (NAND) | Power (W)
Full 12-bit 7.0 2912 33.3
DRUMY_12 53 1413 26.5
This work 4.0 698 14.4
Full 32-bit 17.0 25869 160.8
DRUM11_33 6.7 3278 44.6
This work 5.5 1572 22.8

Fig. 4 is the approximate multiplier adopted for small-secret
LWE. Compared to DRUM, half of the LOD detection logics are
reduced, and the k-bit multiplier can be further optimized to pro-
duce only lg g-bit result, instead of 2k. Since q is a power of 2, the
modulo reduction in both the multiplier and the barrel shifter is
basically bit selection.

5.2 Experiment Setup and Results

The architecture shown in Fig. 4 is synthesized on a commercial
65 nm low-power process node using logic-synthesis tool [21], and
the power is analyzed by [22].

The implementation result for ModLP and ModFHE is summa-
rized in Table 2. Overall, bringing approximate computing into
LWE decryption greatly reduces the amount of circuitry required
for decryption. As summarized in Section 1, we see speed increase,
area reduction and power reduction can be achieved all at once
across all implementations. The only cost here is the decryption er-
ror probability which, as investigated in Section 4, is still under the
required bound. In addition, by specializing the multiplier for LWE
instances in the standard lattice, we can achieve a further 1.325x
speed increase, 2x area reduction and 1.84x power reduction in the
case of ModLP. The technique shines when the original scheme
contains large errors, as in the case of ModFHE. We were able to
use a 11-bit multiplier to calculate 33-bit multiplications, with the
generated error bounded by 233 /4 by overwhelming probability.

6 CONCLUSION

In this paper, we proposed DWE, a methodology to decrypt LWE-
based cryptosystems with approximate hardware. We developed a
systematical approach to study the decryption failure probability
when approximate hardware are used, and verified the theoretical
result using empirical methods. Through the hardware implemen-
tation, we demonstrated significant speed increase, area reduction,
power reduction and ciphertext reduction at almost no cost in the
PKE case by LP, and a slight increase in g in the FHE case.
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