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Abstract—We propose an implementation of a secured content
addressable memory (SCAM) based on homomorphic encryp-
tion (HE), where HE is used to compute the word matching
function without the processor knowing what is being searched
and the result of matching. By exploiting the shallow logic
structure (XNOR followed by AND) of content addressable
memory (CAM), we show that SCAM can be implemented with
only additive homomorphism, greatly improving the efficiency
of the HE algorithm. In the proposed method, the logic of
homomorphic XNOR-AND is replaced with homomorphic XOR-
OR, requiring only simple additions to be performed on the
ciphertext. We also show that our scheme can be implemented by
highly parallelizable and simple hardware architecture. Through
experiment, we demonstrate that our software implementation
is already 403x faster than the fastest known algorithm. With
the help of hardware, we can achieve an energy reduction per
word match by a factor of 477 million times, making our SCAM
scheme much more practical.

I. INTRODUCTION

Private information retrieval (PIR) has been an important
area of research over the past few years, as major companies
outsource their data to cloud services [1]. The basic setting of
PIR is that we have a user who wants to retrieve data from
a server, but does not want the server to know what he/she
has retrieved. In implementing PIR schemes, homomorphic
encryption (HE) is a good theoretical choice, due to HE’s
ability to directly perform computation on encrypted data [2].
Numerous PIR schemes utilizing HE have been proposed [3]–
[5] with optimizations on the underlying HE scheme to
minimize the communication overhead between the user and
the server. However, PIR query can be complex, and these
queries are generally performed on a software database that
can be arbitrary in size. This results in complex functions being
(homomorphically) evaluated on a large number of entries, and
the parameters of the HE scheme needs to be large enough to
ensure security. Hence, secured PIR schemes are, in general,
impractical. For example, a recently proposed HE-based secure
database system requires seven days to retrieve a single row
from a 10-record database [5], where the majority of the
computational time is spent on the expensive bootstrapping
operation.

To accelerate PIR query, we consider a special type of
high-performance memory, the content addressable memory
(CAM). CAM is a type of memory structure that allows a full
parallel search on its entire contents to be performed in a single
clock cycle [6]. CAM finds application in networking [7], [8]
and database [9] to accelerate the search operations. A regular
CAM cell can be as small as nine transistors for binary CAM
(BCAM) [10]. This efficiency, however, relies heavily on the

assumption of performing the searching function on plaintext
without any privacy concerns.

It is a natural question to ask then, that if we can design a
secured CAM (SCAM), where a user wants to retrieve the
addresses of data that match his/her query from a server,
without the server knowing the content of the query. It is clear
that an SCAM scheme is a PIR scheme with a slightly different
protocol: instead of requesting data that matches a complex
condition, SCAM simply queries the addresses of certain data.
Concretely, let x and y be vectors where each vector element
xi, yi ∈ {0, 1} represents the i-th bit in the binary numbers x
and y, respectively. The objective of a traditional BCAM is to
compute

f(x,y) =
∏w

i=1 xi ⊕ yi, (1)

where w is the bit width of x and y. The question here is, if the
objective is to implement a BCAM, but homomorphically, can
we find a scheme that is “efficient,” in the sense that retrieving
a piece of data from a reasonably large CAM costs less than
seven days? Existing research already shows that the answer
is yes. Khedr et al. [11] showed a GPU implementation of (1)
based on the so called GSW scheme [12] that reports a runtime
on the millisecond scale for a simple multi-bit word match.
However, since their method is merely a straightforward
implementation of the GSW scheme, as later explained in
section II-C, inefficient homomorphic multiplication is used to
implement the matching function, degrading the performance
of the scheme.

In this paper, we propose a novel SCAM scheme and its
hardware implementation. Our SCAM targets on realizing a
secured binary CAM architecture. We exploit the fact that
the circuit depth required for homomorphically matching a
word is extremely shallow (essentially two levels of boolean
gates), and design a new HE scheme for word matching. It
is noted that, although our HE scheme is based on exist-
ing research [13], the scheme is designed specifically with
hardware in mind. Thus, unlike the mere accelerator im-
plemented in [14], the original scheme with the expensive
bootstrapping operation [13], or the aforementioned GSW
implementation [11], we avoid double-precision multiplica-
tions and FFT operations on the algorithm level to enable
an efficient hardware implementation. Thus, although the
software implementation of our scheme is already 403x (up to
4,836x with 12 cores) faster than the fastest existing scheme,
the hardware can easily obtain the same level of performance
as the software with a power reduction of 40,000x, as later
shown in section IV. The main contribution of this paper is
summarized as follows.



• A new application of homomorphic encryption: We
target on a new problem of implementing a secured CAM.
Albeit its numerous applications, a secured implementa-
tion of CAM has not yet been proposed to the best of our
knowledge. In this study, we propose an implementation
of SCAM based on HE.

• A hardware-oriented HE scheme: We propose an
XOR-OR homomorphic gate implementation based on
the FHEW scheme to efficiently compute a multi-bit
word match. While the original FHEW scheme can only
handle a single-bit NAND gate, we make substantial
modification to enable a much richer class of gates to
be implemented using the scheme.

• A new hardware design problem: We explore the hard-
ware architecture for our system. Due to the complexity
of the homomorphic evaluation function, the required
hardware is larger than the unencrypted implementation
by several orders of magnitude (e.g., addition on 16 KB
of data to compute a single-bit OR gate). Thus, we face
distinct hardware design trade-offs.

The rest of this paper is organized as follows. First, in
Section II, we specify notations used throughout this paper,
and we give an overview on the preliminary knowledge
related to our HE scheme. Second, our proposed SCAM
scheme is described in Section III. Third, the efficiency of
our implementation based on both numerical estimation and a
proof-of-concept ASIC resource utilization is demonstrated in
Section IV. Finally, we conclude our paper in Section V.

II. PRELIMINARIES

A. Notations
Throughout the paper, we use x and y to represent vectors

in Zw
2 , where w is a constant bit width. x and y are thus

the vector representations of the w-bit number x and y,
respectively. We use N to represent the number of lines in
the CAM, where each CAM line consists of a w-bit integer
in plaintext. In this paper, lg x is the shorthand for log2 x.

For the security notations, we will use m for plaintext
message, c for ciphertext, s for secret key. Enc and Dec
denote the encryption and decryption functions. As explained
in later sections, (q, n, χσ) is a tuple that represents parameters
of the HE scheme with integer ring Zq , dimension n and a
distribution χ with parameter σ.

B. Learning with Errors and Homomorphic Encryption
The integer learning with errors (LWE) problem is first in-

troduced by Regev [15] and later Peikert [16] that respectively
provide the quantum and classical reductions for the LWE
problem to approximate short vector problems in worst-case
lattice, which is known to be hard. Due to the simplicity and
flexibility of the problem, numerous cryptosystems base their
security on the LWE problem [12], [17], [18].

In this study, we adopt the standard LWE-based HE scheme
modified by Ducas and Micciancio [13] named FHEW. The
reason why this scheme is adopted will be described in the
next section (Section II-C), and we first present the FHEW
scheme as a preliminary knowledge. The cryptosystem works
as follows. First, we determine a set of parameters (q, n, χσ)
according to the security level λ we want to achieve, where
q, n ∈ Z, and χ is some distribution with a parameter σ.

In a typical LWE setup, χσ denotes the discrete Gaussian
distribution with a standard deviation σ, and a more detailed
definition of this distribution can be found in (6) of [15]. For
a integer t < q, a message m can be chosen from the message
space Zt. To encrypt the message, we first uniformly draw
two vectors a, s ∈R Zn

q , where ∈R Zn
q means uniformly

randomly sampling n times from the congruence class of
integers Z mod q. Next, we sample an error ε ← χσ, and ε
is a “small” integer (in the sense that ε≪ q). The encryption
and decryption functions Enc,Dec then respectively work as
follows:

b = Enc(m) = ⟨a, s⟩+ mq

t
+ ε mod q ∈ Zq, (2)

m = Dec(b) =

⌊
t

q
((b− ⟨a, s⟩) mod q)

⌉
mod t ∈ Zt. (3)

Note that q, n, and a will be published to allow homomorphic
evaluation of any functions on the ciphertext, and the cipher-
text per se is thus c = (a, b) ∈ Zn+1

q . The above scheme works
as long as |ε| < q/2t, since the rounding function ⌊·⌉ will
round off any error less than 1/2 from the original message m.
Additive homomorphism is achieved by setting the encryption
error |ε| < q/4t. In this way, we can perform an addition of
two ciphertexts and still get a ciphertext with error less than
1/2 during decryption. Multiplicative homomorphism on such
classic LWE-based HE scheme is known to be troublesome,
where only one multiplication can be performed using the
tensor product [17]. Brakerski and Vaikuntanathan extended
the multiplication capability of the scheme by adopting the
relinearization and modulus switching technique [18], [19] to
allow a polynomial number of multiplications to be performed
on the ciphertext, albeit the impractical space overheads.

To implement a NAND without multiplicative homomor-
phism, Ducas and Micciancio observed that, for m0 and m1

encrypted as c1 = (a0, b0) and c2 = (a1, b1) using the
plaintext space Z4 (when t = 4) with error |ε| < q/4t =
q/16, (−a0 − a1,

5q
8 − b0 − b1) is a correct encryption of

NAND(m0,m1) in a different plaintext space Z2 (t = 2)
with error |ε| < q/2t = q/4. Due to space limitation, we only
give a short derivation, and the truth table for (4) is shown in
Table I which exactly describe a NAND function.

Dec((−a0 − a1,
5q

8
− b0 − b1))

=

⌊
2

q

(
5q

8
− (b0 + b1)− (a0s+ a1s)

)⌉
mod 2

=

⌊
2

q

(
5q

8
− m0q

4
− m1q

4
± ε0 ± ε1

)⌉
mod 2

Since all |εi| < q/16, we can combine them and get⌊
5

4
− m0

2
− m1

2
± 4ε

⌉
mod 2. (4)

C. Comparison of LWE-based HE Schemes
Multiplication is an essential part of homomorphic encryp-

tion. Although expensive, multiplication is generally required
for fully homomorphism for the design of a universal gate.
For example, in the GSW scheme [12], Gentry, Sahai, and
Waters show an implementation of homomorphic NAND gate
by computing IN − C1 · C2, where I and Ci are matrices.



TABLE I
TRUTH TABLE FOR THE NAND GATE

m0 m1
5
4 − m0

2 − m1
2 ± 4ε

0 0 ⌊ 5
4 ± 4ε⌉ = 1

0 1 ⌊ 3
4 ± 4ε⌉ = 1

1 0 ⌊ 3
4 ± 4ε⌉ = 1

1 1 ⌊ 1
4 ± 4ε⌉ = 0

Khedr et al. take the very same idea and implemented the
word matching function f =

∏w
i=1 xi ⊕ yi [11] as mentioned

in Section I. When encrypted under the GSM scheme, this op-
eration can be implemented by In−(Ci−Cj)

2 for XNOR, and
several levels of simple multiplications for AND. Obviously,
matrix multiplication is much more expensive than addition,
with a best known algorithm runs on a time complexity of
O(n2.3727) [20]. Khedr et al. reported a speed difference
between multiplication and addition of around 17x even on
a modern high-performance GPU [11]. Thus, in their scheme,
the runtime of the word matching function is dominated by
matrix multiplications.

If we can implement a universal gate without the need of
multiplication, both the time complexity and the computational
resources required can be dramatically reduced. This is the
idea behind the FHEW scheme, where Ducas and Micciancio
showed an implementation of NAND gate with only additive
homomorphism [13]. Unfortunately, a single-bit NAND gate
is all the FHEW scheme can do without bootstrapping. The
idea of the FHEW scheme is to bootstrap the ciphertext (i.e.,
refresh the ciphertext to reduce the error level) after each and
every homomorphic gate operation. Consequently, a single 2-
bit homomorphic NAND gate requires around 0.5 second to
evaluate on a modern CPU, where the runtime is dominated by
the bootstrapping algorithm. In terms of practical performance,
FHEW is much worse than the GSW scheme by orders of
magnitude.

A natural question to ask at this point is, if all we want to do
is matching words, can we design a better scheme that neither
requires multiplication nor bootstrapping. In the next section,
we will show how to implement a two-stage complex boolean
gate with only additive homomorphism without bootstrapping.

III. PROPOSED SCAM SCHEME

Here, we first present the overall SCAM structure including
the communication model in section III-A. Then, the underly-
ing HE scheme is explained in III-B and hardware architecture
to implement such SCAM is discussed in section III-C.

A. Two-Round SCAM Protocol
The content addressable memory, as its name suggests,

performs a slightly different task compared to PIR. In a typical
homomorphic PIR scheme, encrypted addresses (or data) are
sent to the server to retrieve the corresponding data [21].
Contrarily, a CAM receives a piece of data, and outputs the
address of the CAM line where a word match has occurred.
In addition, in a secured CAM scheme where the server holds
the SCAM and its content, we cannot disclose this address
to the server. Thus, we adopt a two-round communication
scheme that is known to be optimal [22] as shown in Fig. 1.
In the protocol, a user sends the encrypted query crequest

Fig. 1. The two-round communication
protocol adopted in this work.

Fig. 2. A gate-level diagram of
a 2-bit XOR-OR complex gate.

TABLE II
THE TRUTH TABLE OF A 2-BIT XOR-OR COMPLEX GATE

x0 y0 x1 y1 XOR-OR HomXOR-OR
∧

0 0 0 0 0 0
0 0 0 1 1 −1
0 0 1 0 1 1
0 0 1 1 0 0
0 1 0 0 1 −2
0 1 0 1 1 −3
0 1 1 0 1 −1
0 1 1 1 1 −2
1 0 0 0 1 2
1 0 0 1 1 1
1 0 1 0 1 3
1 0 1 1 1 2
1 1 0 0 0 0
1 1 0 1 1 −1
1 1 1 0 1 1
1 1 1 1 0 0

to the server, and the server replies the encrypted matching
results cmatch1 , cmatch2 , · · · , cmatchN , where N is the size of
the database, i.e., the number of CAM lines.

B. Homomorphic Encryption Scheme
To implement the function shown in (1), the first problem

we have is, while both XNOR and AND are easy to implement
individually using the FHEW scheme [13], it is hard to
combine them to form an XNOR-AND complex gate. As
a workaround, we consider the implementation of an XOR-
OR complex gate, and an XNOR-AND gate can be obtained
by simply negating the result. Fig. 2 shows a simple 2-bit
XOR-OR gate that has four inputs (we name it 2-bit since it
compares 2 bits of two target values).

For the design of a homomorphic XOR-OR gate, with only
additive homomorphism, we have severe canceling problems.
The implementation of a real homomorphic XOR function
without reduction modulo q requires multiplication, as we can
compute HomXOR(cxi , cyi) = (cxi − cyi)

2, where cxi and
cyi indicate the ciphertext encrypting xi and yi ∈ Z2, respec-
tively. Without multiplication, however, we can still “simulate”
the real XOR using only the function HomXOR-OR

∧
as

follows:

HomXOR-OR
∧

(x,y) =
w∑
i=0

(cxi − cyi). (5)

Equation (5), however, introduces an asymmetry in the result
of xi = 1, yi = 0 where HomXOR

∧
evaluates to positive,

and xi = 0, yi = 1 negative. If we sum the result of
two HomXOR
∧

s’ (this is precisely the function implement-
ing Fig. 2), canceling happens when a positive number is
added to a negative number. For example, consider the input
(x1, x0) = (1, 0) and (y1, y0) = (0, 1), the result should
be 1 indicating a mismatch, but Dec((Enc(1) − Enc(0)) +
(Enc(0)− Enc(1))) = 0 due to canceling.

To counter the canceling problem, we introduce an encryp-
tion constant, denoted as ki, to the i-th bit of x and y. ki here



is a simple constant holding the value ki = 2i. We extend the
plaintext space of the FHEW scheme from Z4 to Zt where
t = kw+1 = 2w+1, and encrypt each bit of x and y using
the corresponding encryption constant. The modified version
of the encryption and decryption function is then devised as
follows.

For each xi in x = [xw, xw−1, · · · , x0]
T where xi ∈ {0, 1},

cxi = Enc(xi) = (a, b),

where b = ⟨a, s⟩+ kixiq

t
+ ε mod q, (6)

kixi = Dec(cxi) =

⌊
t

q
((b− ⟨a, s⟩) mod q)

⌉
mod t. (7)

It is noticed that the decryption function does not recover xi.
Instead, it gives kixi. This is acceptable since all we care is
if the result is zero (indicating a match) or not (a mismatch).
In what follows, we give short proofs for the correctness and
security of our scheme.

1) Correctness:
Lemma 1. Using the encryption and decryption schemes in (6)
and (7), the equality relation of x and y is homomorphically
evaluated by (5).

Proof. We prove Lemma 1 by induction.
Base case: For w = 2, we have two two-bit numbers x =

(x1, x0) and y = (y1, y0). If we decompose (5), we have

HomXOR-OR
∧

(x,y) = cx1 − cy1 + cx0 − cy0 .

Since the encryption function is a simple linear sum, we can
isolate the message term and get

q

t
(2x1 − 2y1 + x0 − y0) + others. (8)

It is noted that the others (the ⟨ai, si⟩ and εi term) and the
constant q

t in (8) will vanish during the decryption step. Thus,
the correctness of the function is illustrated by sketching the
truth table of (8), and the result is appended to Table II. A zero-
equality test on the decrypted result will show us if x = y,
where 0 indicates a match.

Inductive Step: Suppose HomXOR-OR
∧

(x,y) correctly
evaluates the equality relation between x and y where x,y ∈
Zw−1
q . Adding the w-th bit to x and y results in the following

equation.

HomXOR-OR
∧

((xw,x), (yw,y))

= cxw− cyw+

w−1∑
i=0

(cxi− cyi),

where
∑w−1

i=0 (cxi − cyi) decrypts to 0 only when x and y
matches. Using the same way to isolate the plaintext as in the
base case, we get

q

t

(
2w(xw − yw) +

w−1∑
i=0

2i(xi − yi)

)
+ others. (9)

We have two cases here: i) when x and y match, and ii)
when x and y mismatch. In i), the evaluation result depends
on if xw and yw match; if they do, (9) evaluates to 0, and
if they do not, it is either 2w or −2w. Thus, (9) is correct

User query

SCAM cell

SCAM cell

SCAM cell
Adder

bit
Match

SCAM line

SCAM line

SCAM line

SCAM line

Match[0]

Match[1]

Match[2]

Match[N-1]

Secure CAM

Fig. 3. The general architecture of the proposed SCAM, where a user query
is sent to each SCAM line for a match, and the matching result will be sent
back to the user. Each SCAM line consists of w SCAM cells that perform
bit-wise comparison of the query and the stored content.

Fig. 4. The structure of an SCAM cell consists of a n · lg q-bit memory cell,
a lg q-bit register, and a lg q-bit adder.

for i). For ii), it is observed that the range of the sum in (9) is
S ∈ [−(2w− 1),−1]∪ [1, (2w− 1)] where the interval is over
integers (notice

∑w−1
i=0 2i = 2w − 1). The evaluation result

will always be a mismatch: if xw and yw match, the result
will be non-zero due to the lower-bit sum. If xw and yw does
not match, (9) evaluates to ±2w +S, and is always non-zero.
Hence, (9) is also correct for ii).

2) Security: It is noticed that we did not fundamentally
change the encryption and decryption scheme. It is basically
the same scheme as FHEW (as the standard LWE-based
HE scheme), only with a much larger plaintext space (from
t = 4 to t = 2w+1). The security follows proofs in [13]
and [23], where the runtime of the best-known attack against
LWE-based cryptosystem almost entirely depends on the root-
Hermit factor δ [23]. δ can be obtained from the following
formula:

δ = 2(lg
2 β)/(4n lg q), where β = (q/σ) ·

√
ln(1/ε)/π, (10)

where lnx is the natural log. Due to the large size of the
plaintext, we need a modulus q > t for correctness, where t =
2w+1, and a reasonable choice on q suffice. However, as [23]
suggests, larger q induces greater δ that yields a successful
attack on the scheme, albeit extremely slowly (qΘ(1/n) where
n ≥ 500 in the FHEW scheme). Thus, q and n should be
adjusted accordingly to ensure the security of the standard
LWE-based homomorphic cryptosystem. We give a concrete
instantiation of the parameters in section IV.

C. Hardware Architecture

In terms of fully exploiting the amount of parallelism
presents in the proposed HE scheme, a GPU-like structure
should be adopted. However, for our specific algorithmic
design, an ASIC implementation is more efficient for the two
facts: 1) adder is the only computational resource required,



and 2) a large quantity of on-chip memory (instead of caches)
is required, since an SCAM is still a memory unit.

Here we describe a plausible high-level architecture to
implement the proposed SCAM scheme, and leave a more con-
crete parameter instantiation to Section IV. Fig. 3 demonstrates
the overall structure of the proposed SCAM. A user inputs
w n · lg q-bit ciphertexts that represents w bits of plaintext
to the server, where homomorphic matching is performed
by the server. Each SCAM cell performs homomorphic bit-
wise comparison, and the results are homomorphically ORed
together using the w · lg q-bit adder tree to produce the match
result for an SCAM line. This result, as described in Fig. 1,
will be sent back to the user.

Fig. 4 depicts the structure of a single SCAM cell, where a
per-bit ciphertext comparison ( HomXOR-OR
∧

) is performed.
Each integer in the ciphertext is in Zq , so the bit width of the
memory as well as the adder needs to be lg q. By setting q
to be a power of 2, the modulo q operation becomes free by
using an adder with exactly lg q-bit bus width. The memory
is responsible for holding the ciphertext of a one-bit plaintext,
and the size of the ciphertext is (n+1)·lg q bits. Note here that
by encrypting one of the words to be matched as a negative
number in the first place, we do not need to implement a
ciphertext subtracter, and a trivial adder should suffice.

Since each SCAM cell produces a vector of n + 1 lg q-bit
integers, a lg q-bit adder tree with w ·(n+1) fan-in is required
to OR the results of each SCAM cell. To avoid this huge adder
tree, we can serialize this part of the computation by summing
w lg q-bit integers at a time for n+ 1 cycles. In addition, all
n+1 additions can be performed in parallel, so this is essen-
tially a design choice to make, where more adder hardware
delivers less latency in terms of clock cycles. Additionally,
simple pipelining can parallelize the serial addition required
in the SCAM line. Thus, we can produce one lg q-bit integer
at a time for the comparison result, and the whole comparison
process only takes n+ 1 clock cycles.

IV. EXPERIMENT

In this section, we present a concrete instantiation of our
SCAM scheme, and discuss the hardware performance based
on numerical experiment. We will mainly compare our result
to the SHIELD scheme proposed in [11], since it is the best
known scheme that can be used to implement a SCAM.

A. LWE Parameters and Storage Improvement

Table III summarizes two possible instantiation of our
scheme with the corresponding security level (refer to (5.2)
in [23] for the equation to calculate the security level).
Here, our setup is to permit a 32-bit integer to be encrypted
using (6), where a plaintext space of t = 233 is required.
Using the proposed parameter, for a single-bit plaintext, we
have 5.523 KB ciphertext for medium (80-bit) security, and
6.919 KB ciphertext for high (128-bit) security. Compared to
the GSW scheme adopted in [11], for the same 80-bit security
level, we reduce the storage for each ciphertext bit by 83 times
(from 487 KB to 5.523 KB per bit). Note that our ciphertext
size depends on the width of w of the SCAM line, and the
ciphertext can be reduced to 440 bytes per bit for high security
if a 2-bit comparator is enough for the purpose.

TABLE III
PARAMETERS FOR THE PROPOSED SCHEME

lg t lg q n σ Adv. lg ε δ Security (λ)
33 42 1052 8 64 1.00658 80 (Medium)
33 42 1318 8 64 1.00525 128 (High)
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Fig. 5. Runtime comparison between the proposed SCAM and SHIELD [11].
The SCAM is on 128-bit security and SHIELD is of 80-bit security.

B. CPU Implementation

Here we discuss the performance gain of the proposed
SCAM scheme implemented on a conventional CPU. We
base our implementation on the FHEW scheme that has its
source code publicly available [13]. Without the need of
expensive bootstrapping operation, our SCAM scheme can be
implemented by several hundred lines of code. Our scheme is
implemented in the C++ language, and we ran the experiment
on an Intel Xeon E5-2630 2.3 GHz processor using a single
core with 32 GB of memory (unless otherwise stated).

A CPU implementation of the HomXOR-OR
∧

gate requires
n + 1 integer additions and bit-wise integer AND operation
(for modulo q) for a single ciphertext addition. Since there
are w bits that need to be XORed and ORed together to
produce a comparison result, we need to perform w+(w−1)
times ciphertext addition to produce the comparison result.
Assuming integer addition and integer AND can be performed
in a single CPU clock cycle, it requires (2 ·w− 1) · 2(n+ 1)
clock cycles to produce a single-line match result. In our setup,
this means (2 ·32−1) ·2 · (1052+1) = 132, 678 (166, 194 for
high security) cycles for the CPU to compare one SCAM line.
Therefore, on the Xeon processor, in theory, we can perform a
one-line comparison in 57.7µs (resp. 72.3µs), equivalent to a
throughput of 17,331 (resp. 13,831) lines per second per core
for medium and high security.

In practice, the runtime of the HomXOR-OR
∧

gate with
respect to the number of SCAM lines is summarized in Fig. 5.
Due to the unoptimized code, the average recorded comparison
speed (91µs and 111µs per SCAM line for medium and
high security) is slightly slower than the theoretical speed.
Compared to SHIELD [11], we improved the time complexity
from O(n2.3727) (multiplication) to O(n) (addition) and space
complexity from O(n2) to O(n). This translates to a speedup
of 403x for searching through a file with 30 words assuming
that each word can be represented by a 32-bit integer, and up to
4,836x when utilizing all the 12 cores on the CPU. Moreover,
this is a comparison between a conventional CPU and a high-
performance GPU as in [11]. Asymptotically, our scheme will



TABLE IV
SUMMARY OF THE PERFORMANCE OF A SINGLE SCAM LINE

Power Area (Gate Count) Delay
1.205 mW 52,198 9 ns

TABLE V
SUMMARY OF THE PERFORMANCE COMPARISON BETWEEN SHIELD AND

CPU SCAM AS WELL AS ASIC SCAM

SHIELD [11] SCAM (CPU) SCAM (ASIC)
Ciphertext Size 487.5 KB 6.8 KB 6.8 KB

Speed 0.033 s 7.58µs 9.47µs
Power 165 W 95 W 1.205 mW
Energy 5.445 J 0.72 mJ 11.41 nJ

outperform all the existing methods by orders of magnitude.

C. Hardware Implementation
In this section, we compare the CPU and ASIC imple-

mentations of our SCAM scheme. As the homomorphic
computation becomes quite trivial in our scheme, an ASIC
implementation improves the power performance significantly.
We implemented the SCAM line shown in Figs. 3 and 4
using the Verilog language and synthesized the design using
a logic-synthesis tool [24] on a commercial 65 nm technology
node. Table IV summarizes the power, area and delay of a
single SCAM line without the memory cell, and area here is
measured by the count of equivalent number of NAND2 gates.
With pipelining, we can perform the addition for HomXOR

∧

and HomOR
∧

in parallel. Since we compare one pair of lg q-
bit integers at a time, we need n+ 1 cycles for a single line-
comparison to complete. Thus, ideally, each SCAM line takes
9.47µs to process a word match for medium security (11.87µs
for high). The speed performance of the ASIC implementation
is only 10x faster than the CPU implementation since the CPU
runs at a much higher clock frequency. Even with the clock
frequency benefit, we only need two ASIC SCAM lines to
outperform the CPU, assuming that the CPU can fully utilize
its 12 cores. According to Table IV, two lines only cost us
2.4 mW of power. The Xeon CPU requires an average power
consumption of 95 W, translating to roughly 40,000x power
reduction.

Table V summarize the performance comparison of the
SHIELD method in [11], our CPU implementation running
full parallel on 12 cores, and our ASIC implementation with
a single SCAM line. The speed is measured in per word
latency, i.e., the time it takes to evaluate a single word match.
Compared to SHIELD, our ASIC implementation reduces the
overall energy consumption by approximately 477 million
times, essentially making the difference between a “theoret-
ical” and a “practical” implementation.

V. CONCLUSION

We presented a SCAM scheme using a novel homomorphic
encryption scheme, and thoroughly evaluated the performance
of the scheme on both software and hardware. By squashing
out multiplication and bootstrapping from the homomorphic
encryption system, we proposed an algorithm that has ef-
ficient implementation on hardware. In the experiment, we
demonstrate that the software implementation of our scheme
is already up to 4,836x faster than the fastest method known,
and a hardware implementation can be as fast as the software
implementation with a power reduction of 40,000 times.
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