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ABSTRACT

As the transistor process technology continues to scale, the
aging effect posits new challenges to the already complex
static timing analysis (STA) process. In this paper, we first
observe that aging can be thought of a type of correlated dy-
namic on-chip variations (OCV), and identify the problem
introduced by such type of OCV. In particular, we take the
negative bias temperature instability (NBTI) as an example
dynamic OCV mechanism. We then propose a learning-
based STA (LSTA) library to “predict” the timing of gates
by capturing the correlation between our designed predic-
tors. In the experiment, we used a linear regressor, support
vector regression, and a non-linear method, random forest,
to create the prediction model. An ISCAS’89 benchmark
circuit is used as a training sample to for the algorithms
to learn the aging model of gates, and the accuracies of the
model is then tested on two processor-scale designs using the
library are evaluated, achieving a maximum absolute error
of 3.42%.

1. INTRODUCTION

The ever expanding technological frontier of the semicon-
ductor manufacturing industry is yet to push the scaling of
transistors to their limits. The complex physics on this level
of scale raises a variety of device-level characteristic varia-
tions. These variations can be classified into two groups:
static variation and dynamic variation (commonly known as
the aging effect). Static variations are determined during
or after the fabrication of a chip, while dynamic variations
are generated over the lifespan of the chip. Correlations
between the variations produce complex high-dimensional
interactions that result in both optimism and pessimism,
especially when the traditional STA approach is taken.

The high dimensional correlation problem persists across
many different fields related to modern-day STA. As a
possible solution, learning-based timing characterization is
under active research. A study has utilized artificial neu-
ral network (ANN) and support vector machine (SVM) for
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path-based timing correction of non-signal-integrity (non-
SI) mode to SI mode error compensation [11]. Others have
been considering on predicting the timing failure of SRAM [7]
and improving timing correlation between tools from differ-
ent vendors [10]. However, the basic role that learning plays
in these works is being an additional step after the applica-
tion of STA, or multiple STAs, to improve the overall timing
accuracy. The core part of STA is still traditional because it
is assumed that a two-dimensional library with dimensions
of load capacitance and slew time is sufficient for accurate
STA.

Dynamic variations destroy the two-dimensional assump-
tion. In particular, negative bias temperature instability
(NBTI) and hot-carrier injection (HCI) are variations that
gradually degrade a MOS device over a certain period of
time, thus named aging effect [2, 8, 14]. Aging adds new
challenges to the existing timing analysis flow, for it com-
plexes the simple variation model assumed by the modern
timing libraries by introducing correlated high-dimensional
Vin variations. We demonstrate an example in Figure 1.
While the details of the figure will be explained in Section 2,
essentially, the figure is a SPICE simulation of the delays
of an OR gate at different degradation levels involving two
transistors, M1 and M2. It is observed that in the figure,
the slope of the curve changes as M2 degrades, and this is
caused by the fact that there is actually three pMOS tran-
sistors in an OR gate. The degradation on the third tran-
sistor, denoted as AVums, is a function of those of the other
transistors, AVar1 and AVue under NBTI. With traditional
interpolation-based STA libraries, a dense two-dimensional
map is required to minimize the error introduced by M3,
since it greatly degrades the linearity between the actually
gate delay and the degradations on M1 and M2.

In searching for a more efficient but accurate solution to
the high-dimensional correlation problem, we utilize regres-
sion-based machine learning algorithms. Machine learning
algorithms can capture the underlying correlations between
variables (predictor variables), and efficiently characterize
a much more compact library compared to the traditional
methodology. In addition, we want to note that the pro-
posed learning-based static timing analysis, shorted as the
LSTA flow, is obviously not limited to aging prediction. The
main contribution of this paper is summarized as follows:

e The identification of difficulties involving high-
dimensional STA: we point out that when NBTT is
considered, it is required for the library to deal with
high-dimensional correlated data. In addition, the pro-
posed library construction is not limited to NBTI we
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Figure 1: The AV;,-Adelay relationship for the falling
edge of A1l input to an OR gate simulated by SPICE.
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Figure 2: An OR gate demonstrates the stacking
effect and the multi-stage correlation.

focus in this paper. Essentially, any identifiable non-
Gaussian correlated OCV requires the library to be
multi-dimensional.

e A learning-based STA flow: we propose a funda-
mentally novel approach to STA that utilizes learning
(regression) instead of interpolation. Learning-based
approach is known for its capability of capturing high-
dimensional correlations efficiently. Hence, to solve the
previously described challenge of high dimensionality,
LSTA is an essential choice.

e A thorough evaluation on different learning se-
tups: we experiment on different learning algorithms
on setups for the LSTA library, and carefully exam-
ine the errors of timing predictions on both large and
small designs. We achieved a maximum absolute error
of 3.45% in larger designs, and around 4% across all
tested designs.

The rest of this paper will be organized as follows. First, in
Section 2, we explain the NBTT effect and point out the chal-
lenge it introduces to STA. Second, we introduce our pro-
posed timing characterization flow in Section 3, and discuss
the experimental result in Section 4. Finally, we conclude
our paper in Section 5.

2. PRELIMINARIES
2.1 NBTI and Existing Research

Negative bias temperature instability has been studied
extensively as it introduces non-Gaussian threshold voltage
(Vin) variations to a pMOS device over a long period of time
(e.g., 10 years). Accurate STA on dynamic variations such
as HCI and NBTI is essential for efficient mitigation tech-
niques, and is currently under active research [4, 9, 12]. The
fundamental approach for solving NBTT during an STA run

is by adding extra dimensions to the STA library expressing
the amount of degradation. For example, [9] adds n dimen-
sions to the traditional 2D LUT, where n is the number of
transistors in the particular gate. As explained in the next
subsection, this approach faces two severe problems: i) a
full characterization of a complex gate results in an expo-
nential growth in the size of the library and ii) interpolation
is inherently weak towards problems with high dimension-
ality. In [12], essentially the same approach has been taken
where n dimensional dynamic variations are considered in a
degradation equation. Apart from the dimensionality prob-
lem, [12] also does not provide standard SPICE results on
the aged delays, leaving the accuracy of their method to
be untested. To avoid the dimensionality problem, in [4],
only a single dimension is added to the STA library, and
signal probability is used to index the new dimension where
NBTI-induced delay degradation is taken into account. This
method achieves lower library characterization overhead and
faster runtime, but suffers when multi-stage pMOS transis-
tors are presented in the gate to be characterized.

2.2 High-Dimensional Correlation of NBTI

One important observation here is, for the n dimensions
added to the STA library as in [9, 12], unnecessary points
will be characterized, for that the variables are correlated.
There are three types of correlations: i) delay correlation due
to process-parameter correlations, which is static and thus
not related to this work, ii) delay correlation, represented by
the stacking effect, and iii) multi-stage correlation. In what
follows, we will describe the latter two correlations, which
have not yet been well handled, using specific examples.

For ii), a simple example of the MOSFET stacking effect
related to NBTI degradation is illustrated in Figure 2. In
the first stage of the OR gate, suppose that M1 makes a
high to low transition. Although M2 stays low and thus
is not involved in the transition process, the current go-
ing through both pMOS transistors is affected by the Vin
of the lower transistor, as every standard MOSFET model
describes [22]. If the Vi of that lower pMOS is degraded,
the transition time increases as a function of the amount
of threshold voltage degradation, AVi,. This creates a sit-
uation where the delay of a certain cell will be correlated
to the amount of Vi, degradation on each and every pMOS
device in the cell. Figure 1, as shortly mentioned in the
introduction, is the SPICE simulation of an OR gate that
clearly indicates this trend. The curve for the AVi,-Adelay
relation is shifted upward significantly as M2 degrades.

The above mentioned delay correlation is the essential rea-
son for requiring high-dimensional STA; however, the type-
iii) correlation, or the multi-stage correlation appears to be
more challenging, as it increases the dimensionality of STA,
but in an implicit way. Two curves present in Figure 1,
marked as correct and incorrect when transistor M2 is fully
degraded. The incorrect curve ignores the effect of the third
transistor, M3, in the second stage of the OR gate, as shown
in Figure 2. At this point, it seems that it is necessary for
the STA library to have three degradation dimensions to
accurately characterize the AVip-Adelay relation. This is
not entirely true, for that in fact, under NBTI and HCI,
the amount of degradation on M3 is perfectly correlated,
in a way or another, to the joint probability distribution
of M1 and M2. For example, under NBTI degradation, all
the three pMOS in Figure 2 cannot suffer from full degra-
dation concurrently, due to the fact that if both M1 and
M2 are turned on, M3 is forced to be shut down. In order



for an interpolation-based STA library to accurately capture
this complex correlation, it has to create the wasteful three-
dimensional space to capture the correlation, just as existing
works [9, 12] do.

3. LSTA: LEARNING-BASED STATIC TIM-

ING ANALYSIS

To solve the problem introduced by NBTI described in
the previous section, we propose a regression-based library
construct to solve the high dimensionality problem.

3.1 Problem Formulation

We first describe a high-level formulation of gate delay
under dynamic Vi, variations (i.e., aging). Here we take
NBTT as an example. For any given gate, we consider each
input pin to the gate to be an independent random variable
X :{0,1} — {0,1}, that is, it can take either a logic value
of 0 or 1. We can then define the logic 0 probability to be
Pz, = Pr[X; = 0] for each pMOS attached to the i-th input
pin X;. Next, it is easy to see that any gate node Y; of
a pMOS that is not directly attached to an input pin is a
conditioned random variable on the input random variables,
namely, p,, = Pr[Y; = 0/{X;}]. Following this, we assume
an abstract function v : [0,1] — R that maps the signal
probability (can be logic 0 probability, up to the definition)
p on a pMOS transistor to its AVin, the Vi, degradation.
Finally, d, the delay of a gate under dynamic variations, can
be abstractly modeled as the following equation.

d:dO‘i’g(U(pO)a"' ,”U(pm_1),"' ,’U(pn—l)), (1)

where dj is the delay without degradation, m is the number
of pMOS attached directly to m distinct inputs, n is the
total number of transistors in the gate, and g : R® — R
maps a set of AV;, values to a Adelay value. Equation (1)
points out our dilemma: correlations present in the probabil-
ity space that makes the maximum dimension of the gate m;
nevertheless, the AV;,-Adelay relationship is n-dimensional.

To cope with the dimensionality dilemma, we can create
the linear-step grid in Vi1, space, and find an inverse function
for v to calculate the probability correlation. Concretely, let
v~ 1R — [0, 1], for each Vi, step, we can calculate

Pm :Corrm(vil(AVthOL T 7U71(A‘/thm—1))

0 (AVin, ) (2)

where corr; is the i-th correlation function that maps the
independent variables (po, - - - , pm—1) to the dependent vari-
ables (pm, -+ ,pn—1). After calculating the correlations, we
can use v to map the dependent variables back to Vi1, space,
and use Equation (1) to calculate the actual delay at this
AVin step. Namely,

d=do +g(A‘/thm"' ’A‘/thnl—l’v(pm)’... vfu(p’ﬂfl)) (3)

It is also noted that, once the distribution for all the inde-
pendent variables are determined, this procedure becomes
strictly a static timing analysis problem, instead of statisti-
cal STA.

While the procedure described above may seem viable,
to create an STA library using this method, we face two
problems: the corr; function may not be well-defined, and
v~1 can simply be non-existent. To make things less ab-
stract, take NBTI and the OR gate we have been using

D1 :corrn71(v71(AVth0), xx

as an example again. The relationship between AV, and
logic 0 probability p can be formulated as AV;, = v(p) =

22 n
(%) according to [3, 13]. The v~ here can be

0.81t2 +log, AV4}, —0.001n2 K2pCt

log,, AV, —0.001n2 K 2pCt
The correlation between ps, the logic 0 probability on M3
and pi1, p2 is given by the simple equation ps = 1 — p1p2.
We then can use the previously described v™! to calculate
p3, and the final AViy, is then given by

AVths =v (1 - vil(AVthl) : Uﬁl(AVﬁQ)) ’ (4)

which is non-linear and thus time-consuming to solve (the p-
AV;y relation is an approximated equality in the first place)
on a per-gate scale.

As the number of degradation mechanisms increases, even
a simple cell like half-adder becomes quite impossible to
model. It is absolutely tedious to manually adjust each v
and v~! functions on a per-gate level to obtain a good ac-
curacy in calculating the steps, and this becomes the main
motivation for us in proposing an alternative learning ap-
proach to the timing under such complex variation with
high-dimensional correlations, which will be explained in the
next section.

written as p = v (AVin) =

3.2 Learning the Correlations

In this section, we first describe the overall timing flow,
and then present the regression construct. We use the term
“fresh” to refer to the state where the gate/design without
aging-induced dynamic variations, and “aged” for the gates
that are degraded under the aging effect.

3.2.1 Library Characterization and Application

We first present an overall flow for the library charac-
terization, delaying the discussion on regression setup, pa-
rameter selection and algorithm adoption in later sections.
Figure 3 illustrates the library characterization step. First
of all, a traditional 2D LUT, shown in the bottom-left of
the figure, will be characterized as usual. Meanwhile, a set
of training designs will be prepared and the fresh and aged
gate delays in these designs are characterized, as indicated
on the right-hand side of the figure. The fresh delay works
as one of the predictor variables, and the aged delay is the
predicted variable. The tool used in the characterization
step should be the correct timing value, either derived from
complex mathematical expression or careful real-chip mea-
surement. Finally, the aged and fresh gate delays, along
with other parameters, are setup to be the training samples
for the learning algorithm, from which the aging models will
be created. These learned models will be integrated into the
STA library.

Figure 4 summarizes the library application process. The
application of the proposed library is virtually the same as
the traditional one, except a set of parameters required by
the learning algorithm, as described in the next section.

3.2.2  Regression Setup

In general, a regression analysis can be seen as a series
of function optimization in a certain function class f € F
to minimize some error function £ over a set of data pairs
(zi,y:). The problem can be formulated into the following
equation.

?Iéig E(yi, f(x4)) (5)

While different machine learning algorithms have different
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applied in a timing step.

approaches to F and &, it is noted that the exact function we
want to learn actually has already been abstractly sketched
in Section 3.1 as Equations (2) and (3). Thus, assuming the
v~1 and corr; functions can be analytically defined, Equa-
tion (5) can be perfectly solved. Nonetheless, in reality, this
is not the case, and we seek an approximation to the equa-
tion.

3.3 Parameter Selection

Parameter selection is the core of every application of ma-
chine learning algorithms. In particular, the problem we face
in a learning-based STA library is unique, in the sense that
the difficulty lies in using what we have in hand to obtain
what we want to know. For example, although a thoroughly
characterized CSM waveform is almost certainly better as a
predictor variable than a single delay value from an NLDM
library, this piece of information can be costly to obtain in
the library characterization step and thus unavailable to the
learning algorithm.

In this study, we target on an NLDM implementation, and
selected the parameters accordingly. An NLDM implemen-
tation feeds the learning algorithm with the least amount
of information and the most amount of non-linear errors.
Thus, we consider this implementation to be a worst-case
scenario. The aging-prediction formulation is demonstrated
in Equation (6).

d= f(do, A‘/tho, ey AVvthm,1 s tslew, Cload), (6)

where tsiew and Cloaq are the traditional timing slew and

capacitive load used to index the NLDM libraries. Equa-
tion (6) shares the same notation as described in Equa-
tion (1), for that virtually they are the same function. The
difference here is that, instead of explicitly writing out the
correlations functions in Equations (2) and the inverse func-
tion v ! as in Equation (3), only m AV, values are used in
Equation (6). In essence, what we are doing here is to use
Equation (5) to learn the best f that embeds the correla-
tion functions of the gate and the inverse AV4y, function v_l,
instead of manually adjusting the parameters and functions.

On a separate note, to train the prediction model, a set of
training samples each containing the corresponding values
for the variables in Equation (6) is required in the training
process. In this work, we only extract these values from
a fixed experimental design. An efficient way generating
high-quality training design remains as an interesting open
problem.

3.4 Learning Algorithm Examination

When considering a learning problem, we have truly a
plethora of algorithms at hand. In this work, we focus on
two fundamental types of algorithms: linear regressors and
decision tree regressors. While linear regressors are widely
used, their robustness relies heavily on the distribution of
the data. We use the support vector regression (SVR) with
a radial basis function (RBF) kernel to examine the capa-
bility a linear regressor. On a different note, decision trees
(DTs) are known for their efficiency and capability of cap-
turing non-linear data [15]. However, a single decision tree
generally suffers from overfitting, since it tries to capture all
sorts of non-linearities that reside in the data [15]. Hence,
we apply two typical methods to improve the performance
of DT: namely, bagging [5] (with random forest (RF)) and
boosting [16] (with AdaBoost).

4. NUMERICAL EXPERIMENT
4.1 Experiment Setup

Numerical experiments are conducted on a set of designs
that includes the ISCAS’89 circuit bench [6] and two proces-
sors. One is a five-stage pipelined processor from a commer-
cial IP library [21] (named “Shino”), and the other is a mod-
ified version of the five-stage pipelined processor [1] that im-
plements the full MIPS32 instruction set (named “Kotori”).
In the experiment, we resynthesized the ISCAS’89 bench-
mark circuit using cells: NAND, NOR, AND, OR, INV,
and DFF. Nangate 45nm Open Cell Library [17] is used
for circuit implementation. The designs are synthesized us-
ing a logic-synthesis tool [18]. To simplify the evaluation
process (also let SPICE to obtain a realistic run time), we
selected 25,446 worst-case path candidates from Shino and
24,978 from Kotori using a commercial STA tool [20]. In
this experiment, we fixed the year of aging and temperature
at 10 years and 400 K for NBTI. These parameters can also
be used as a predictor variable to achieve a more complex
analysis with virtually the same construct. As mentioned
in Section 3, we used [19] as the golden standard for cell
timings. The experiment was conducted on a Intel Xeon
E5-2630 processor using a single thread.

The experiment flow is summarized in Figure 5. We first
use the s38584 circuit in ISCAS’89 bench to train the learn-
ing algorithm, and then apply the model to larger designs
(processors). The training design contains 18,119 training
samples. A sample here is a gate delay associated with a par-
ticular set of predictor parameters. The training design of



Testing Designs

| | SPICE ‘

Training Designs

| Aging Training

Algorithms Simulation

Result
Evaluation

Figure 5: The evaluation flow of path delays utilizing
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Table 1: Result of proposed technique (all errors are
compared to SPICE simulation)

Design | # Samples | MAE (%) | NRMSE (%) f;;nmlmgég
Shino 5281 3.34 0.93 0.12 0.42
Kotori 5813 2.86 0.24 0.13 0.46

s27 %5 .93 13 0.10 | 0.001
ST401 378 158 71 0.10 | 0.03
S5378 1383 1.06 i3 011 [ 0.1
S13207 3362 353 i3 0.11 [ 0.18

$38584 has 11,052 paths and a longest path delay of 2.32 ns,
a considerably smaller design when compared to a processor
with more than 20k paths. The training and prediction pro-
cess is conducted for each gate in the designs, whereas the
error evaluation is performed on the paths. We report two
types of error, the maximum absolute error (MAE) and the
normalized root-mean square error (NRMSE) with respect
to the path delay calculated by SPICE. The NRMSE for-
mula is given as NRMSE = %,
the predicted path delay, D; is the correct path delay mea-
sured by SPICE, n is the number of paths, and Dy, . and
Dy, are the maximum and minimum path delays measured
by SPICE, respectively. In what follows, we will first present
the overall result in Section 4.2, and perform an algorithm
comparison in Section 4.3.

where D, is

4.2 Experiment Result: Overall

Figures 6, 7, and 8 compare the accuracy of delay cal-
culation under a specific training-testing setting. The test
design here is Shino. The fresh-time versus aged-time delay
relationship is plotted in Figure 6. Using an aging-aware 3D
LUT as proposed in [4] without the manual adjustment re-
quired by the paper, the result is demonstrated in Figure 7
with a significant amount of underestimation, as expected.
Finally, the aged delay calculated using the proposed learn-
ing algorithm with respect to SPICE is shown in Figure 8,
with an MAE of 3.4%.

Table 1 summarizes the number of samples, MAE, NRMSE,
and runtime of different test designs. All results are obtained
using s38584 in the ISCAS’89 circuit bench to train a RF
with 200 decision trees (each tree has a maximum depth of
20). These hyper-parameters are selected empirically on the
training dataset, as no significant accuracy improvement is
observed with further increases in the parameter values. RF
is used to obtain the results because it is discovered that
SVR is not suitable for this type of analysis from the run-
time perspective (A more detailed discussion will be carried

Positive direction
[ Negative direction

Max Error (%)

DT ADA SVR RF
Method

Figure 9: Performance of each algorithm on Shino
with dashed bar indicating the maximum error, and
blank bar the absolute value of the minimum error.

Table 2: Comparison between the MAEs for tree-

based algorithms and linear algorithms
W/ Data Norm. | W/o Data Norm.
Accuracy 3.42% 3.42%
RF Train Time 2.29s 2.30s
Test time 0.12s 0.12s
Accuracy 4.23% 9.94%
SVR | Train Time 11.73s 18.45s
Test time 0.42s 0.90s

out in Section 4.3).

4.3 Experiment Result: Algorithm Compar-
isons

In this subsection, we compare the speed of RF and SVR
in both training and testing. Here, train time is the time
required to train the regressor using the s38584 design, and
test time is the time to apply the learned model to the gates
in the Shino design. From Table 1, it suggests that the run-
time for applying RF regressor is independent of the size of
the test set. This can be explained by the fact that 200 trees
have to be evaluated regardless of the test size. Meanwhile,
due to the fact that the evaluation of each tree is logarith-
mic in the number of tree nodes (linear in tree height), and
that the maximum depth for each tree is fixed, we see al-
most a constant runtime for the RF regressor. On the other
hand, SVR sees a significant performance degradation as
the number of test samples increases. Second, as outlined
in Table 2, data normalization simplifies the problem SVR
needs to solve, and results in a great performance enhance-
ment runtime for both training and testing, as well as an
improvement in accuracy. In contrast, it seems that data
normalization has virtually no effect on the RF regressor.

Figure 9 shows the maximum error in the positive (overes-
timation) and negative (underestimation) directions of dif-
ferent learning algorithms. Comparing with a single decision
tree, RF and AdaBoost are more stable across designs. In
this study, we found RF (bagging) and AdaBoost (boost-
ing) performs equally well. Thus, we conclude here that
tree-based regressors are more suitable for our problem for
their stability both in terms of training/testing speed and
prediction accuracy. As a final note, these errors can be
offset to be positive only, if required.

5. CONCLUSION

In this paper, we proposed a learning-based method for
predicting the NBTI-induced delay degradation in large de-
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signs like processors. The method utilizes smaller designs,
and “learns” the degradations on gates in these designs. In
the experiment, the proposed technique is applied to two
processor designs with various algorithm construct to verify
its effectiveness. We achieved a maximum absolute error of
3.45% in the processors, and around 4% across all designs.
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